1,432 research outputs found

    What's Decidable About Sequences?

    Full text link
    We present a first-order theory of sequences with integer elements, Presburger arithmetic, and regular constraints, which can model significant properties of data structures such as arrays and lists. We give a decision procedure for the quantifier-free fragment, based on an encoding into the first-order theory of concatenation; the procedure has PSPACE complexity. The quantifier-free fragment of the theory of sequences can express properties such as sortedness and injectivity, as well as Boolean combinations of periodic and arithmetic facts relating the elements of the sequence and their positions (e.g., "for all even i's, the element at position i has value i+3 or 2i"). The resulting expressive power is orthogonal to that of the most expressive decidable logics for arrays. Some examples demonstrate that the fragment is also suitable to reason about sequence-manipulating programs within the standard framework of axiomatic semantics.Comment: Fixed a few lapses in the Mergesort exampl

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Decidable Classes of Tree Automata Mixing Local and Global Constraints Modulo Flat Theories

    Get PDF
    We define a class of ranked tree automata TABG generalizing both the tree automata with local tests between brothers of Bogaert and Tison (1992) and with global equality and disequality constraints (TAGED) of Filiot et al. (2007). TABG can test for equality and disequality modulo a given flat equational theory between brother subterms and between subterms whose positions are defined by the states reached during a computation. In particular, TABG can check that all the subterms reaching a given state are distinct. This constraint is related to monadic key constraints for XML documents, meaning that every two distinct positions of a given type have different values. We prove decidability of the emptiness problem for TABG. This solves, in particular, the open question of the decidability of emptiness for TAGED. We further extend our result by allowing global arithmetic constraints for counting the number of occurrences of some state or the number of different equivalence classes of subterms (modulo a given flat equational theory) reaching some state during a computation. We also adapt the model to unranked ordered terms. As a consequence of our results for TABG, we prove the decidability of a fragment of the monadic second order logic on trees extended with predicates for equality and disequality between subtrees, and cardinality.Comment: 39 pages, to appear in LMCS journa

    Polynomial Interrupt Timed Automata

    Full text link
    Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (PolITA). We prove the decidability of the reachability and model checking of a timed version of CTL by an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. Moreover, we show that PolITA are incomparable with stopwatch automata. Finally additional features are introduced while preserving decidability

    On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases

    Full text link
    This article studies the expressive power of finite automata recognizing sets of real numbers encoded in positional notation. We consider Muller automata as well as the restricted class of weak deterministic automata, used as symbolic set representations in actual applications. In previous work, it has been established that the sets of numbers that are recognizable by weak deterministic automata in two bases that do not share the same set of prime factors are exactly those that are definable in the first order additive theory of real and integer numbers. This result extends Cobham's theorem, which characterizes the sets of integer numbers that are recognizable by finite automata in multiple bases. In this article, we first generalize this result to multiplicatively independent bases, which brings it closer to the original statement of Cobham's theorem. Then, we study the sets of reals recognizable by Muller automata in two bases. We show with a counterexample that, in this setting, Cobham's theorem does not generalize to multiplicatively independent bases. Finally, we prove that the sets of reals that are recognizable by Muller automata in two bases that do not share the same set of prime factors are exactly those definable in the first order additive theory of real and integer numbers. These sets are thus also recognizable by weak deterministic automata. This result leads to a precise characterization of the sets of real numbers that are recognizable in multiple bases, and provides a theoretical justification to the use of weak automata as symbolic representations of sets.Comment: 17 page

    Bounds on the Automata Size for Presburger Arithmetic

    Full text link
    Automata provide a decision procedure for Presburger arithmetic. However, until now only crude lower and upper bounds were known on the sizes of the automata produced by this approach. In this paper, we prove an upper bound on the the number of states of the minimal deterministic automaton for a Presburger arithmetic formula. This bound depends on the length of the formula and the quantifiers occurring in the formula. The upper bound is established by comparing the automata for Presburger arithmetic formulas with the formulas produced by a quantifier elimination method. We also show that our bound is tight, even for nondeterministic automata. Moreover, we provide optimal automata constructions for linear equations and inequations

    Bounded Reachability for Temporal Logic over Constraint Systems

    Full text link
    We present CLTLB(D), an extension of PLTLB (PLTL with both past and future operators) augmented with atomic formulae built over a constraint system D. Even for decidable constraint systems, satisfiability and Model Checking problem of such logic can be undecidable. We introduce suitable restrictions and assumptions that are shown to make the satisfiability problem for the extended logic decidable. Moreover for a large class of constraint systems we propose an encoding that realize an effective decision procedure for the Bounded Reachability problem
    corecore