13,484 research outputs found

    In the Maze of Data Languages

    Full text link
    In data languages the positions of strings and trees carry a label from a finite alphabet and a data value from an infinite alphabet. Extensions of automata and logics over finite alphabets have been defined to recognize data languages, both in the string and tree cases. In this paper we describe and compare the complexity and expressiveness of such models to understand which ones are better candidates as regular models

    Evaluating Knowledge Representation and Reasoning Capabilites of Ontology Specification Languages

    Get PDF
    The interchange of ontologies across the World Wide Web (WWW) and the cooperation among heterogeneous agents placed on it is the main reason for the development of a new set of ontology specification languages, based on new web standards such as XML or RDF. These languages (SHOE, XOL, RDF, OIL, etc) aim to represent the knowledge contained in an ontology in a simple and human-readable way, as well as allow for the interchange of ontologies across the web. In this paper, we establish a common framework to compare the expressiveness of "traditional" ontology languages (Ontolingua, OKBC, OCML, FLogic, LOOM) and "web-based" ontology languages. As a result of this study, we conclude that different needs in KR and reasoning may exist in the building of an ontology-based application, and these needs must be evaluated in order to choose the most suitable ontology language(s)

    Jeeg: Temporal Constraints for the Synchronization of Concurrent Objects

    No full text
    We introduce Jeeg, a dialect of Java based on a declarative replacement of the synchronization mechanisms of Java that results in a complete decoupling of the 'business' and the 'synchronization' code of classes. Synchronization constraints in Jeeg are expressed in a linear temporal logic which allows to effectively limit the occurrence of the inheritance anomaly that commonly affects concurrent object oriented languages. Jeeg is inspired by the current trend in aspect oriented languages. In a Jeeg program the sequential and concurrent aspects of object behaviors are decoupled: specified separately by the programmer these are then weaved together by the Jeeg compiler

    On the Expressiveness of Joining

    Get PDF
    The expressiveness of communication primitives has been explored in a common framework based on the pi-calculus by considering four features: synchronism (asynchronous vs synchronous), arity (monadic vs polyadic data), communication medium (shared dataspaces vs channel-based), and pattern-matching (binding to a name vs testing name equality vs intensionality). Here another dimension coordination is considered that accounts for the number of processes required for an interaction to occur. Coordination generalises binary languages such as pi-calculus to joining languages that combine inputs such as the Join Calculus and general rendezvous calculus. By means of possibility/impossibility of encodings, this paper shows coordination is unrelated to the other features. That is, joining languages are more expressive than binary languages, and no combination of the other features can encode a joining language into a binary language. Further, joining is not able to encode any of the other features unless they could be encoded otherwise.Comment: In Proceedings ICE 2015, arXiv:1508.04595. arXiv admin note: substantial text overlap with arXiv:1408.145

    On the Expressive Power of Multiple Heads in CHR

    Full text link
    Constraint Handling Rules (CHR) is a committed-choice declarative language which has been originally designed for writing constraint solvers and which is nowadays a general purpose language. CHR programs consist of multi-headed guarded rules which allow to rewrite constraints into simpler ones until a solved form is reached. Many empirical evidences suggest that multiple heads augment the expressive power of the language, however no formal result in this direction has been proved, so far. In the first part of this paper we analyze the Turing completeness of CHR with respect to the underneath constraint theory. We prove that if the constraint theory is powerful enough then restricting to single head rules does not affect the Turing completeness of the language. On the other hand, differently from the case of the multi-headed language, the single head CHR language is not Turing powerful when the underlying signature (for the constraint theory) does not contain function symbols. In the second part we prove that, no matter which constraint theory is considered, under some reasonable assumptions it is not possible to encode the CHR language (with multi-headed rules) into a single headed language while preserving the semantics of the programs. We also show that, under some stronger assumptions, considering an increasing number of atoms in the head of a rule augments the expressive power of the language. These results provide a formal proof for the claim that multiple heads augment the expressive power of the CHR language.Comment: v.6 Minor changes, new formulation of definitions, changed some details in the proof

    Strategic polymorphism requires just two combinators!

    Get PDF
    In previous work, we introduced the notion of functional strategies: first-class generic functions that can traverse terms of any type while mixing uniform and type-specific behaviour. Functional strategies transpose the notion of term rewriting strategies (with coverage of traversal) to the functional programming paradigm. Meanwhile, a number of Haskell-based models and combinator suites were proposed to support generic programming with functional strategies. In the present paper, we provide a compact and matured reconstruction of functional strategies. We capture strategic polymorphism by just two primitive combinators. This is done without commitment to a specific functional language. We analyse the design space for implementational models of functional strategies. For completeness, we also provide an operational reference model for implementing functional strategies (in Haskell). We demonstrate the generality of our approach by reconstructing representative fragments of the Strafunski library for functional strategies.Comment: A preliminary version of this paper was presented at IFL 2002, and included in the informal preproceedings of the worksho
    • 

    corecore