3,814 research outputs found

    On Languages Accepted by P/T Systems Composed of joins

    Full text link
    Recently, some studies linked the computational power of abstract computing systems based on multiset rewriting to models of Petri nets and the computation power of these nets to their topology. In turn, the computational power of these abstract computing devices can be understood by just looking at their topology, that is, information flow. Here we continue this line of research introducing J languages and proving that they can be accepted by place/transition systems whose underlying net is composed only of joins. Moreover, we investigate how J languages relate to other families of formal languages. In particular, we show that every J language can be accepted by a log n space-bounded non-deterministic Turing machine with a one-way read-only input. We also show that every J language has a semilinear Parikh map and that J languages and context-free languages (CFLs) are incomparable

    Non-polynomial Worst-Case Analysis of Recursive Programs

    Full text link
    We study the problem of developing efficient approaches for proving worst-case bounds of non-deterministic recursive programs. Ranking functions are sound and complete for proving termination and worst-case bounds of nonrecursive programs. First, we apply ranking functions to recursion, resulting in measure functions. We show that measure functions provide a sound and complete approach to prove worst-case bounds of non-deterministic recursive programs. Our second contribution is the synthesis of measure functions in nonpolynomial forms. We show that non-polynomial measure functions with logarithm and exponentiation can be synthesized through abstraction of logarithmic or exponentiation terms, Farkas' Lemma, and Handelman's Theorem using linear programming. While previous methods obtain worst-case polynomial bounds, our approach can synthesize bounds of the form O(nlogn)\mathcal{O}(n\log n) as well as O(nr)\mathcal{O}(n^r) where rr is not an integer. We present experimental results to demonstrate that our approach can obtain efficiently worst-case bounds of classical recursive algorithms such as (i) Merge-Sort, the divide-and-conquer algorithm for the Closest-Pair problem, where we obtain O(nlogn)\mathcal{O}(n \log n) worst-case bound, and (ii) Karatsuba's algorithm for polynomial multiplication and Strassen's algorithm for matrix multiplication, where we obtain O(nr)\mathcal{O}(n^r) bound such that rr is not an integer and close to the best-known bounds for the respective algorithms.Comment: 54 Pages, Full Version to CAV 201

    An Upper Bound on the Complexity of Recognizable Tree Languages

    Get PDF
    The third author noticed in his 1992 PhD Thesis [Sim92] that every regular tree language of infinite trees is in a class (D_n(Σ0_2))\Game (D\_n({\bf\Sigma}^0\_2)) for some natural number n1n\geq 1, where \Game is the game quantifier. We first give a detailed exposition of this result. Next, using an embedding of the Wadge hierarchy of non self-dual Borel subsets of the Cantor space 2ω2^\omega into the class Δ1_2{\bf\Delta}^1\_2, and the notions of Wadge degree and Veblen function, we argue that this upper bound on the topological complexity of regular tree languages is much better than the usual Δ1_2{\bf\Delta}^1\_2

    On interpretations of bounded arithmetic and bounded set theory

    Full text link
    In a recent paper, Kaye and Wong proved the following result, which they considered to belong to the folklore of mathematical logic. THEOREM: The first-order theories of Peano arithmetic and ZF with the axiom of infinity negated are bi-interpretable: that is, they are mutually interpretable with interpretations that are inverse to each other. In this note, I describe a theory of sets that stands in the same relation to the bounded arithmetic IDelta0 + exp. Because of the weakness of this theory of sets, I cannot straightforwardly adapt Kaye and Wong's interpretation of arithmetic in set theory. Instead, I am forced to produce a different interpretation.Comment: 12 pages; section on omega-models removed due to error; references added and typos correcte

    Axioms and Decidability for Type Isomorphism in the Presence of Sums

    Get PDF
    We consider the problem of characterizing isomorphisms of types, or, equivalently, constructive cardinality of sets, in the simultaneous presence of disjoint unions, Cartesian products, and exponentials. Mostly relying on results about polynomials with exponentiation that have not been used in our context, we derive: that the usual finite axiomatization known as High-School Identities (HSI) is complete for a significant subclass of types; that it is decidable for that subclass when two types are isomorphic; that, for the whole of the set of types, a recursive extension of the axioms of HSI exists that is complete; and that, for the whole of the set of types, the question as to whether two types are isomorphic is decidable when base types are to be interpreted as finite sets. We also point out certain related open problems

    Topological Complexity of omega-Powers : Extended Abstract

    Get PDF
    This is an extended abstract presenting new results on the topological complexity of omega-powers (which are included in a paper "Classical and effective descriptive complexities of omega-powers" available from arXiv:0708.4176) and reflecting also some open questions which were discussed during the Dagstuhl seminar on "Topological and Game-Theoretic Aspects of Infinite Computations" 29.06.08 - 04.07.08
    corecore