558 research outputs found

    On the exponential convergence of the Kaczmarz algorithm

    Full text link
    The Kaczmarz algorithm (KA) is a popular method for solving a system of linear equations. In this note we derive a new exponential convergence result for the KA. The key allowing us to establish the new result is to rewrite the KA in such a way that its solution path can be interpreted as the output from a particular dynamical system. The asymptotic stability results of the corresponding dynamical system can then be leveraged to prove exponential convergence of the KA. The new bound is also compared to existing bounds

    Acceleration of Randomized Kaczmarz Method via the Johnson-Lindenstrauss Lemma

    Get PDF
    The Kaczmarz method is an algorithm for finding the solution to an overdetermined consistent system of linear equations Ax=b by iteratively projecting onto the solution spaces. The randomized version put forth by Strohmer and Vershynin yields provably exponential convergence in expectation, which for highly overdetermined systems even outperforms the conjugate gradient method. In this article we present a modified version of the randomized Kaczmarz method which at each iteration selects the optimal projection from a randomly chosen set, which in most cases significantly improves the convergence rate. We utilize a Johnson-Lindenstrauss dimension reduction technique to keep the runtime on the same order as the original randomized version, adding only extra preprocessing time. We present a series of empirical studies which demonstrate the remarkable acceleration in convergence to the solution using this modified approach

    Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz Algorithm

    Get PDF
    We obtain an improved finite-sample guarantee on the linear convergence of stochastic gradient descent for smooth and strongly convex objectives, improving from a quadratic dependence on the conditioning (L/µ) 2 (where L is a bound on the smoothness and µ on the strong convexity) to a linear dependence on L/µ. Furthermore, we show how reweighting the sampling distribution (i.e. importance sampling) is necessary in order to further improve convergence, and obtain a linear dependence in the average smoothness, dominating previous results. We also discuss importance sampling for SGD more broadly and show how it can improve convergence also in other scenarios. Our results are based on a connection we make between SGD and the randomized Kaczmarz algorithm, which allows us to transfer ideas between the separate bodies of literature studying each of the two methods. In particular, we recast the randomized Kaczmarz algorithm as an instance of SGD, and apply our results to prove its exponential convergence, but to the solution of a weighted least squares problem rather than the original least squares problem. We then present a modified Kaczmarz algorithm with partially biased sampling which does converge to the original least squares solution with the same exponential convergence rate

    A randomized Kaczmarz algorithm with exponential convergence

    Full text link
    The Kaczmarz method for solving linear systems of equations is an iterative algorithm that has found many applications ranging from computer tomography to digital signal processing. Despite the popularity of this method, useful theoretical estimates for its rate of convergence are still scarce. We introduce a randomized version of the Kaczmarz method for consistent, overdetermined linear systems and we prove that it converges with expected exponential rate. Furthermore, this is the first solver whose rate does not depend on the number of equations in the system. The solver does not even need to know the whole system, but only a small random part of it. It thus outperforms all previously known methods on general extremely overdetermined systems. Even for moderately overdetermined systems, numerical simulations as well as theoretical analysis reveal that our algorithm can converge faster than the celebrated conjugate gradient algorithm. Furthermore, our theory and numerical simulations confirm a prediction of Feichtinger et al. in the context of reconstructing bandlimited functions from nonuniform sampling

    Deterministic Versus Randomized Kaczmarz Iterative Projection

    Get PDF
    Kaczmarz's alternating projection method has been widely used for solving a consistent (mostly over-determined) linear system of equations Ax=b. Because of its simple iterative nature with light computation, this method was successfully applied in computerized tomography. Since tomography generates a matrix A with highly coherent rows, randomized Kaczmarz algorithm is expected to provide faster convergence as it picks a row for each iteration at random, based on a certain probability distribution. It was recently shown that picking a row at random, proportional with its norm, makes the iteration converge exponentially in expectation with a decay constant that depends on the scaled condition number of A and not the number of equations. Since Kaczmarz's method is a subspace projection method, the convergence rate for simple Kaczmarz algorithm was developed in terms of subspace angles. This paper provides analyses of simple and randomized Kaczmarz algorithms and explain the link between them. It also propose new versions of randomization that may speed up convergence

    Two-subspace Projection Method for Coherent Overdetermined Systems

    Get PDF
    We present a Projection onto Convex Sets (POCS) type algorithm for solving systems of linear equations. POCS methods have found many applications ranging from computer tomography to digital signal and image processing. The Kaczmarz method is one of the most popular solvers for overdetermined systems of linear equations due to its speed and simplicity. Here we introduce and analyze an extension of the Kaczmarz method that iteratively projects the estimate onto a solution space given by two randomly selected rows. We show that this projection algorithm provides exponential convergence to the solution in expectation. The convergence rate improves upon that of the standard randomized Kaczmarz method when the system has correlated rows. Experimental results confirm that in this case our method significantly outperforms the randomized Kaczmarz method.Comment: arXiv admin note: substantial text overlap with arXiv:1204.027

    Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study

    Full text link
    We study the Kaczmarz methods for solving systems of quadratic equations, i.e., the generalized phase retrieval problem. The methods extend the Kaczmarz methods for solving systems of linear equations by integrating a phase selection heuristic in each iteration and overall have the same per iteration computational complexity. Extensive empirical performance comparisons establish the computational advantages of the Kaczmarz methods over other state-of-the-art phase retrieval algorithms both in terms of the number of measurements needed for successful recovery and in terms of computation time. Preliminary convergence analysis is presented for the randomized Kaczmarz methods

    Preasymptotic Convergence of Randomized Kaczmarz Method

    Get PDF
    Kaczmarz method is one popular iterative method for solving inverse problems, especially in computed tomography. Recently, it was established that a randomized version of the method enjoys an exponential convergence for well-posed problems, and the convergence rate is determined by a variant of the condition number. In this work, we analyze the preasymptotic convergence behavior of the randomized Kaczmarz method, and show that the low-frequency error (with respect to the right singular vectors) decays faster during first iterations than the high-frequency error. Under the assumption that the inverse solution is smooth (e.g., sourcewise representation), the result explains the fast empirical convergence behavior, thereby shedding new insights into the excellent performance of the randomized Kaczmarz method in practice. Further, we propose a simple strategy to stabilize the asymptotic convergence of the iteration by means of variance reduction. We provide extensive numerical experiments to confirm the analysis and to elucidate the behavior of the algorithms.Comment: 20 page
    corecore