1,064 research outputs found

    The Dirac Quantum Automaton: a preview

    Full text link
    Quantum Information and the new informational paradigm are entering the domain of quantum field theory and gravity, suggesting the quantum automata framework. The quantum automaton is the minimal-assumption extension to the Planck and ultrarelativistic scales of quantum field theory. It can describe localized states and measurements, which are unmanageable by quantum field theory. The automaton theory is a very promising framework for quantum gravity, since it is quantum ab-initio, with relativistic covariance as emergent and not assumed a priori, it is free from all the problems arising from the continuum, it doesn't suffer violations of causality, and has no divergences. It is the natural scenario to accommodate the quantum holographic principle. Lorentz covariance and all other symmetries are violated in the ultrarelativistic Planckian regime, but are perfectly recovered at the Fermi-scale. In the present report, after briefly reviewing the fundamental principles at the basis of the quantum cellular automata extension of quantum field theory, I will present a preview of recent results on the Fermi scale limit [1] and on the Dirac automaton in two space-dimensions [2]. The automaton in three dimensions is under way.Comment: Work presented at the conference "Quantum Theory: Reconsideration of Foundations-6 on June 12th 2012 at Linnaeus University, Vaxjo, Sweden. [10 pages, 2 eps figures

    Coxeter Groups and Asynchronous Cellular Automata

    Get PDF
    The dynamics group of an asynchronous cellular automaton (ACA) relates properties of its long term dynamics to the structure of Coxeter groups. The key mathematical feature connecting these diverse fields is involutions. Group-theoretic results in the latter domain may lead to insight about the dynamics in the former, and vice-versa. In this article, we highlight some central themes and common structures, and discuss novel approaches to some open and open-ended problems. We introduce the state automaton of an ACA, and show how the root automaton of a Coxeter group is essentially part of the state automaton of a related ACA.Comment: 10 pages, 4 figure

    Cellular automaton supercolliders

    Get PDF
    Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron' and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems

    Complexity of Two-Dimensional Patterns

    Full text link
    In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of ``regular language'' or ``local rule'' that are equivalent in d=1 lead to distinct classes in d >= 2. We explore the closure properties and computational complexity of these classes, including undecidability and L-, NL- and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d >= 2 has a periodic point of a given period, and that certain ``local lattice languages'' are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t^{-d} unless it maps every initial condition to a single homogeneous state.Comment: To appear in J. Stat. Phy

    The Kinetic Basis of Self-Organized Pattern Formation

    Full text link
    In his seminal paper on morphogenesis (1952), Alan Turing demonstrated that different spatio-temporal patterns can arise due to instability of the homogeneous state in reaction-diffusion systems, but at least two species are necessary to produce even the simplest stationary patterns. This paper is aimed to propose a novel model of the analog (continuous state) kinetic automaton and to show that stationary and dynamic patterns can arise in one-component networks of kinetic automata. Possible applicability of kinetic networks to modeling of real-world phenomena is also discussed.Comment: 8 pages, submitted to the 14th International Conference on the Synthesis and Simulation of Living Systems (Alife 14) on 23.03.2014, accepted 09.05.201

    Cellular automata and self-organized criticality

    Get PDF
    Cellular automata provide a fascinating class of dynamical systems capable of diverse complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and time scales.Comment: 23 pages, 12 figures (most in color); uses sprocl.tex; chapter submitted for "Some new directions in science on computers," G. Bhanot, S. Chen, and P. Seiden, ed

    Automaton Semigroups and Groups: On the Undecidability of Problems Related to Freeness and Finiteness

    Full text link
    In this paper, we study algorithmic problems for automaton semigroups and automaton groups related to freeness and finiteness. In the course of this study, we also exhibit some connections between the algebraic structure of automaton (semi)groups and their dynamics on the boundary. First, we show that it is undecidable to check whether the group generated by a given invertible automaton has a positive relation, i.e. a relation p = 1 such that p only contains positive generators. Besides its obvious relation to the freeness of the group, the absence of positive relations has previously been studied and is connected to the triviality of some stabilizers of the boundary. We show that the emptiness of the set of positive relations is equivalent to the dynamical property that all (directed positive) orbital graphs centered at non-singular points are acyclic. Gillibert showed that the finiteness problem for automaton semigroups is undecidable. In the second part of the paper, we show that this undecidability result also holds if the input is restricted to be bi-reversible and invertible (but, in general, not complete). As an immediate consequence, we obtain that the finiteness problem for automaton subsemigroups of semigroups generated by invertible, yet partial automata, so called automaton-inverse semigroups, is also undecidable. Erratum: Contrary to a statement in a previous version of the paper, our approach does not show that that the freeness problem for automaton semigroups is undecidable. We discuss this in an erratum at the end of the paper

    An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    Get PDF
    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits
    corecore