30 research outputs found

    Solitons in nonlinear lattices

    Full text link
    This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions can be drawn. In particular, a novel fundamental property of 1D solitons, which does not occur in the absence of NLs, is a finite threshold value of the soliton norm, necessary for their existence. In multidimensional settings, the stability of solitons supported by the spatial modulation of the nonlinearity is a truly challenging problem, for the theoretical and experimental studies alike. In both the 1D and 2D cases, the mechanism which creates solitons in NLs is principally different from its counterpart in linear lattices, as the solitons are created directly, rather than bifurcating from Bloch modes of linear lattices.Comment: 169 pages, 35 figures, a comprehensive survey of results on solitons in purely nonlinear and mixed lattices, to appear in Reviews of Modern Physic

    Soliton generation and control in engineered materials

    Get PDF
    Optical solitons provide unique opportunities for the control of light‐bylight. Today, the field of soliton formation in natural materials is mature, as the main properties of the possible soliton states are well understood. In particular, optical solitons have been observed experimentally in a variety of materials and physical settings, including media with cubic, quadratic, photorefractive, saturable, nonlocal and thermal nonlinearities. New opportunities for soliton generation, stability and control may become accessible in complex engineered, artificial materials, whose properties can be modified at will by, e.g., modulations of the material parameters or the application gain and absorption landscapes. In this way one may construct different types of linear and nonlinear optical lattices by transverse shallow modulations of the linear refractive index and the nonlinearity coefficient or complex amplifying structures in dissipative nonlinear media. The exploration of the existence, stability and dynamical properties of conservative and dissipative solitons in settings with spatially inhomogeneous linear refractive index, nonlinearity, gain or absorption, is the subject of this PhD Thesis. We address stable conservative fundamental and multipole solitons in complex engineered materials with an inhomogeneous linear refractive index and nonlinearity. We show that stable two‐dimensional solitons may exist in nonlinear lattices with transversally alternating domains with cubic and saturable nonlinearities. We consider multicomponent solitons in engineered materials, where one field component feels the modulation of the refractive index or nonlinearity while the other component propagates as in a uniform nonlinear medium. We study whether the cross‐phase‐modulation between two components allows the stabilization of the whole soliton state. Media with defocusing nonlinearity growing rapidly from the center to the periphery is another example of a complex engineered material. We study such systems and, in contrast to the common belief, we have found that stable bright solitons do exist when defocusing nonlinearity grows towards the periphery rapidly enough. We consider different nonlinearity landscapes and analyze the types of soliton solution available in each case. Nonlinear materials with complex spatial distributions of gain and losses also provide important opportunities for the generation of stable one‐ and multidimensional fundamental, multipole, and vortex solitons. We study onedimensional solitons in focusing and defocusing nonlinear dissipative materials with single‐ and double‐well absorption landscapes. In two‐dimensional geometries, stable vortex solitons and complexes of vortices could be observed. We not only address stationary vortex structures, but also steadily rotating vortex solitons with azimuthally modulated intensity distributions in radially symmetric gain landscapes. Finally, we study the possibility of forming stable topological light bullets in focusing nonlinear media with inhomogeneous gain landscapes and uniform twophoton absorption

    On some nonlinear and nonlocal effective equations in kinetic theory and nonlinear optics

    Get PDF
    This thesis deals with some nonlinear and nonlocal effective equations arising in kinetic theory and nonlinear optics. First, it is shown that the homogeneous non-cutoff Boltzmann equation for Maxwellian molecules enjoys strong smoothing properties: In the case of power-law type particle interactions, we prove the Gevrey smoothing conjecture. For Debye-Yukawa type interactions, an analogous smoothing effect is shown. In both cases, the smoothing is exactly what one would expect from an analogy to certain heat equations of the form tu=f(Δ)u\partial_t u = f(-\Delta)u, with a suitable function ff, which grows at infinity, depending on the interaction potential. The results presented work in arbitrary dimensions, including also the one-dimensional Kac-Boltzmann equation. In the second part we study the entropy decay of certain solutions of the Kac master equation, a probabilistic model of a gas of interacting particles. It is shown that for initial conditions corresponding to NN particles in a thermal equilibrium and MNM\leq N particles out of equilibrium, the entropy relative to the thermal state decays exponentially to a fraction of the initial relative entropy, with a rate that is essentially independent of the number of particles. Finally, we investigate the existence of dispersion management solitons. Using variational techniques, we prove that there is a threshold for the existence of minimisers of a nonlocal variational problem, even with saturating nonlinearities, related to the dispersion management equation

    Existence of infinitely many radial nodal solutions for a Dirichlet problem involving mean curvature operator in Minkowski space

    Get PDF
    In this paper, we show the existence of infinitely many radial nodal solutions for the following Dirichlet problem involving mean curvature operator in Minkowski space −div � ∇y 1−|∇y| 2 = λh(y) + g(|x|, y) in B, y = 0 on ∂B, where B = {x ∈ RN : |x| < 1} is the unit ball in RN, N ≥ 1, λ ≥ 0 is a parameter, h ∈ C(R) and g ∈ C(R+ × R). By bifurcation and topological methods, we prove the problem possesses infinitely many component of radial solutions branching off at λ = 0 from the trivial solution, each component being characterized by nodal properties

    Symmetries of Nonlinear PDEs on Metric Graphs and Branched Networks

    Get PDF
    This Special Issue focuses on recent progress in a new area of mathematical physics and applied analysis, namely, on nonlinear partial differential equations on metric graphs and branched networks. Graphs represent a system of edges connected at one or more branching points (vertices). The connection rule determines the graph topology. When the edges can be assigned a length and the wave functions on the edges are defined in metric spaces, the graph is called a metric graph. Evolution equations on metric graphs have attracted much attention as effective tools for the modeling of particle and wave dynamics in branched structures and networks. Since branched structures and networks appear in different areas of contemporary physics with many applications in electronics, biology, material science, and nanotechnology, the development of effective modeling tools is important for the many practical problems arising in these areas. The list of important problems includes searches for standing waves, exploring of their properties (e.g., stability and asymptotic behavior), and scattering dynamics. This Special Issue is a representative sample of the works devoted to the solutions of these and other problems
    corecore