51 research outputs found

    Wildcard dimensions, coding theory and fault-tolerant meshes and hypercubes

    Get PDF
    Hypercubes, meshes and tori are well known interconnection networks for parallel computers. The sets of edges in those graphs can be partitioned to dimensions. It is well known that the hypercube can be extended by adding a wildcard dimension resulting in a folded hypercube that has better fault-tolerant and communication capabilities. First we prove that the folded hypercube is optimal in the sense that only a single wildcard dimension can be added to the hypercube. We then investigate the idea of adding wildcard dimensions to d-dimensional meshes and tori. Using techniques from error correcting codes we construct d-dimensional meshes and tori with wildcard dimensions. Finally, we show how these constructions can be used to tolerate edge and node faults in mesh and torus networks

    A class of hierarchical graphs as topologies for interconnection networks

    Get PDF
    We study some topological and algorithmic properties of a recently defined hierarchical interconnection network, the hierarchical crossed cube HCC(k,n), which draws upon constructions used within the well-known hypercube and also the crossed cube. In particular, we study: the construction of shortest paths between arbitrary vertices in HCC(k,n); the connectivity of HCC(k,n); and one-to-all broadcasts in parallel machines whose underlying topology is HCC(k,n) (with both one-port and multi-port store-and-forward models of communication). Moreover, (some of) our proofs are applicable not just to hierarchical crossed cubes but to hierarchical interconnection networks formed by replacing crossed cubes with other families of interconnection networks. As such, we provide a generic construction with accompanying generic results relating to some topological and algorithmic properties of a wide range of hierarchical interconnection networks

    Reliability Analysis of the Hypercube Architecture.

    Get PDF
    This dissertation presents improved techniques for analyzing network-connected (NCF), 2-connected (2CF), task-based (TBF), and subcube (SF) functionality measures in a hypercube multiprocessor with faulty processing elements (PE) and/or communication elements (CE). These measures help study system-level fault tolerance issues and relate to various application modes in the hypercube. Solutions discussed in the text fall into probabilistic and deterministic models. The probabilistic measure assumes a stochastic graph of the hypercube where PE\u27s and/or CE\u27s may fail with certain probabilities, while the deterministic model considers that some system components are already failed and aims to determine the system functionality. For probabilistic model, MIL-HDBK-217F is used to predict PE and CE failure rates for an Intel iPSC system. First, a technique called CAREL is presented. A proof of its correctness is included in an appendix. Using the shelling ordering concept, CAREL is shown to solve the exact probabilistic NCF measure for a hypercube in time polynomial in the number of spanning trees. However, this number increases exponentially in the hypercube dimension. This dissertation, then, aims to more efficiently obtain lower and upper bounds on the measures. Algorithms, presented in the text, generate tighter bounds than had been obtained previously and run in time polynomial in the cube dimension. The proposed algorithms for probabilistic 2CF measure consider PE and/or CE failures. In attempting to evaluate deterministic measures, a hybrid method for fault tolerant broadcasting in the hypercube is proposed. This method combines the favorable features of redundant and non-redundant techniques. A generalized result on the deterministic TBF measure for the hypercube is then described. Two distributed algorithms are proposed to identify the largest operational subcubes in a hypercube C\sb{n} with faulty PE\u27s. Method 1, called LOS1, requires a list of faulty components and utilizes the CMB operator of CAREL to solve the problem. In case the number of unavailable nodes (faulty or busy) increases, an alternative distributed approach, called LOS2, processes m available nodes in O(mn) time. The proposed techniques are simple and efficient

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified
    • …
    corecore