227,077 research outputs found

    Studies of New Vector Resonances at the CLIC Multi-TeV e+e- Collider

    Get PDF
    Several models predict the existence of new vector resonances in the multi-TeV region, which can be produced in high energy e+e- collisions in the s-channel. In this paper we review the existing limits on the masses of these resonances from LEP/SLC and TEVATRON data and from atomic parity violation in some specific models. We study the potential of a multi-TeV e+e- collider, such as CLIC, for the determination of their properties and nature.Comment: 17 pages, 16 EPS figures, uses JHEP3.cl

    Nuclear mass systematics by complementing the Finite Range Droplet Model with neural networks

    Full text link
    A neural-network model is developed to reproduce the differences between experimental nuclear mass-excess values and the theoretical values given by the Finite Range Droplet Model. The results point to the existence of subtle regularities of nuclear structure not yet contained in the best microscopic/phenomenological models of atomic masses. Combining the FRDM and the neural-network model, we create a hybrid model with improved predictive performance on nuclear-mass systematics and related quantities.Comment: Proceedings for the 15th Hellenic Symposium on Nuclear Physic

    Singular Cucker-Smale Dynamics

    Full text link
    The existing state of the art for singular models of flocking is overviewed, starting from microscopic model of Cucker and Smale with singular communication weight, through its mesoscopic mean-filed limit, up to the corresponding macroscopic regime. For the microscopic Cucker-Smale (CS) model, the collision-avoidance phenomenon is discussed, also in the presence of bonding forces and the decentralized control. For the kinetic mean-field model, the existence of global-in-time measure-valued solutions, with a special emphasis on a weak atomic uniqueness of solutions is sketched. Ultimately, for the macroscopic singular model, the summary of the existence results for the Euler-type alignment system is provided, including existence of strong solutions on one-dimensional torus, and the extension of this result to higher dimensions upon restriction on the smallness of initial data. Additionally, the pressureless Navier-Stokes-type system corresponding to particular choice of alignment kernel is presented, and compared - analytically and numerically - to the porous medium equation

    Kinematics of the ionized-to-neutral interfaces in Monoceros R2

    Full text link
    Context. Monoceros R2 (Mon R2), at a distance of 830 pc, is the only ultra-compact H ii region (UC H ii) where its associated photon-dominated region (PDR) can be resolved with the Herschel Space Observatory. Aims. Our aim is to investigate observationally the kinematical patterns in the interface regions (i.e., the transition from atomic to molecular gas) associated with Mon R2. Methods. We used the HIFI instrument onboard Herschel to observe the line profiles of the reactive ions CH+, OH+ and H2O+ toward different positions in Mon R2. We derive the column density of these molecules and compare them with gas-phase chemistry models. Results. The reactive ion CH+ is detected both in emission (at central and red-shifted velocities) and in absorption (at blue-shifted velocities). OH+ is detected in absorption at both blue- and red-shifted velocities, with similar column densities. H2O+ is not detected at any of the positions, down to a rms of 40 mK toward the molecular peak. At this position, we find that the OH+ absorption originates in a mainly atomic medium, and therefore is associated with the most exposed layers of the PDR. These results are consistent with the predictions from photo-chemical models. The line profiles are consistent with the atomic gas being entrained in the ionized gas flow along the walls of the cavity of the H ii region. Based on this evidence, we are able to propose a new geometrical model for this region. Conclusions. The kinematical patterns of the OH+ and CH+ absorption indicate the existence of a layer of mainly atomic gas for which we have derived, for the first time, some physical parameters and its dynamics.Comment: 6 pages, 5 figures. Accepted for publication in A&
    corecore