963 research outputs found

    Reliable Physical Layer Network Coding

    Full text link
    When two or more users in a wireless network transmit simultaneously, their electromagnetic signals are linearly superimposed on the channel. As a result, a receiver that is interested in one of these signals sees the others as unwanted interference. This property of the wireless medium is typically viewed as a hindrance to reliable communication over a network. However, using a recently developed coding strategy, interference can in fact be harnessed for network coding. In a wired network, (linear) network coding refers to each intermediate node taking its received packets, computing a linear combination over a finite field, and forwarding the outcome towards the destinations. Then, given an appropriate set of linear combinations, a destination can solve for its desired packets. For certain topologies, this strategy can attain significantly higher throughputs over routing-based strategies. Reliable physical layer network coding takes this idea one step further: using judiciously chosen linear error-correcting codes, intermediate nodes in a wireless network can directly recover linear combinations of the packets from the observed noisy superpositions of transmitted signals. Starting with some simple examples, this survey explores the core ideas behind this new technique and the possibilities it offers for communication over interference-limited wireless networks.Comment: 19 pages, 14 figures, survey paper to appear in Proceedings of the IEE

    Source and Physical-Layer Network Coding for Correlated Two-Way Relaying

    Full text link
    In this paper, we study a half-duplex two-way relay channel (TWRC) with correlated sources exchanging bidirectional information. In the case, when both sources have the knowledge of correlation statistics, a source compression with physical-layer network coding (SCPNC) scheme is proposed to perform the distributed compression at each source node. When only the relay has the knowledge of correlation statistics, we propose a relay compression with physical-layer network coding (RCPNC) scheme to compress the bidirectional messages at the relay. The closed-form block error rate (BLER) expressions of both schemes are derived and verified through simulations. It is shown that the proposed schemes achieve considerable improvements in both error performance and throughput compared with the conventional non-compression scheme in correlated two-way relay networks (CTWRNs).Comment: 15 pages, 6 figures. IET Communications, 201

    On the Maximum Achievable Sum-Rate of Interfering Two-Way Relay Channels

    Get PDF
    Hierarchical networks can provide very high data rates to multiple mobile stations (MSs) through a dense network of fixed relay nodes (RNs) fed by few hub base stations (HBSs). In order to achieve high spectral efficiencies RNs can act as two-way RNs. However the dense RN deployment gives rise to high co-channel interference (CCI) that limits sum-rate performance. In this letter we consider a simple hierarchical network consisting of an HBS with two highly directional antennas communicating with two MSs via two interfering two-way RNs. To mitigate CCI and boost sum-rates we propose a two-way relaying strategy based on AF combined with Network MIMO processing which is applied over the concatenation of the backhaul and access network channels. We compare our proposed strategy with a baseline DF approach and we show that it performs significantly better when CCI is dominant
    • …
    corecore