126 research outputs found

    On the exact variance of Tsallis entropy in a random pure state

    Full text link
    Tsallis entropy is a useful one-parameter generalization of the standard von Neumann entropy in information theory. We study the variance of Tsallis entropy of bipartite quantum systems in a random pure state. The main result is an exact variance formula of Tsallis entropy that involves finite sums of some terminating hypergeometric functions. In the special cases of quadratic entropy and small subsystem dimensions, the main result is further simplified to explicit variance expressions. As a byproduct, we find an independent proof of the recently proved variance formula of von Neumann entropy based on the derived moment relation to the Tsallis entropy

    Generalized isotropic Lipkin-Meshkov-Glick models: ground state entanglement and quantum entropies

    Get PDF
    We introduce a new class of generalized isotropic Lipkin-Meshkov-Glick models with su(m+1)(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of su(m+1)(m+1) type. We evaluate in closed form the reduced density matrix of a block of LL spins when the whole system is in its ground state, and study the corresponding von Neumann and R\'enyi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as alogLa\log L when LL tends to infinity, where the coefficient aa is equal to (mk)/2(m-k)/2 in the ground state phase with kk vanishing su(m+1)(m+1) magnon densities. In particular, our results show that none of these generalized Lipkin-Meshkov-Glick models are critical, since when LL\to\infty their R\'enyi entropy RqR_q becomes independent of the parameter qq. We have also computed the Tsallis entanglement entropy of the ground state of these generalized su(m+1)(m+1) Lipkin-Meshkov-Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when mk3m-k\ge3. Finally, in the su(3)(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of su(3)(3). This is also true in the su(m+1)(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m+1)(m+1)-simplex in Rm\mathbf R^m whose vertices are the weights of the fundamental representation of su(m+1)(m+1).Comment: Typeset with LaTeX, 32 pages, 3 figures. Final version with corrections and additional reference

    Entanglement, quantum randomness, and complexity beyond scrambling

    Get PDF
    Scrambling is a process by which the state of a quantum system is effectively randomized due to the global entanglement that "hides" initially localized quantum information. In this work, we lay the mathematical foundations of studying randomness complexities beyond scrambling by entanglement properties. We do so by analyzing the generalized (in particular R\'enyi) entanglement entropies of designs, i.e. ensembles of unitary channels or pure states that mimic the uniformly random distribution (given by the Haar measure) up to certain moments. A main collective conclusion is that the R\'enyi entanglement entropies averaged over designs of the same order are almost maximal. This links the orders of entropy and design, and therefore suggests R\'enyi entanglement entropies as diagnostics of the randomness complexity of corresponding designs. Such complexities form a hierarchy between information scrambling and Haar randomness. As a strong separation result, we prove the existence of (state) 2-designs such that the R\'enyi entanglement entropies of higher orders can be bounded away from the maximum. However, we also show that the min entanglement entropy is maximized by designs of order only logarithmic in the dimension of the system. In other words, logarithmic-designs already achieve the complexity of Haar in terms of entanglement, which we also call max-scrambling. This result leads to a generalization of the fast scrambling conjecture, that max-scrambling can be achieved by physical dynamics in time roughly linear in the number of degrees of freedom.Comment: 72 pages, 4 figures. Rewritten version with new title. v3: published versio

    Some Open Points in Nonextensive Statistical Mechanics

    Full text link
    We present and discuss a list of some interesting points that are currently open in nonextensive statistical mechanics. Their analytical, numerical, experimental or observational advancement would naturally be very welcome.Comment: 30 pages including 6 figures. Invited paper to appear in the International Journal of Bifurcation and Chao

    Multipartite entanglement characterization of a quantum phase transition

    Get PDF
    A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.Comment: 10 pages, 6 figures, final versio

    Hilbert-Schmidt Separability Probabilities and Noninformativity of Priors

    Full text link
    The Horodecki family employed the Jaynes maximum-entropy principle, fitting the mean (b_{1}) of the Bell-CHSH observable (B). This model was extended by Rajagopal by incorporating the dispersion (\sigma_{1}^2) of the observable, and by Canosa and Rossignoli, by generalizing the observable (B_{\alpha}). We further extend the Horodecki one-parameter model in both these manners, obtaining a three-parameter (b_{1},\sigma_{1}^2,\alpha) two-qubit model, for which we find a highly interesting/intricate continuum (-\infty < \alpha < \infty) of Hilbert-Schmidt (HS) separability probabilities -- in which, the golden ratio is featured. Our model can be contrasted with the three-parameter (b_{q}, \sigma_{q}^2,q) one of Abe and Rajagopal, which employs a q(Tsallis)-parameter rather than α\alpha, and has simply q-invariant HS separability probabilities of 1/2. Our results emerge in a study initially focused on embedding certain information metrics over the two-level quantum systems into a q-framework. We find evidence that Srednicki's recently-stated biasedness criterion for noninformative priors yields rankings of priors fully consistent with an information-theoretic test of Clarke, previously applied to quantum systems by Slater.Comment: 26 pages, 12 figure

    Entangled random pure states with orthogonal symmetry: exact results

    Full text link
    We compute analytically the density ϱN,M(λ)\varrho_{N,M}(\lambda) of Schmidt eigenvalues, distributed according to a fixed-trace Wishart-Laguerre measure, and the average R\'enyi entropy Sq\langle\mathcal{S}_q\rangle for reduced density matrices of entangled random pure states with orthogonal symmetry (β=1)(\beta=1). The results are valid for arbitrary dimensions N=2k,MN=2k,M of the corresponding Hilbert space partitions, and are in excellent agreement with numerical simulations.Comment: 15 pages, 5 figure
    corecore