1,899 research outputs found

    Statistical Mechanics of Surjective Cellular Automata

    Get PDF
    Reversible cellular automata are seen as microscopic physical models, and their states of macroscopic equilibrium are described using invariant probability measures. We establish a connection between the invariance of Gibbs measures and the conservation of additive quantities in surjective cellular automata. Namely, we show that the simplex of shift-invariant Gibbs measures associated to a Hamiltonian is invariant under a surjective cellular automaton if and only if the cellular automaton conserves the Hamiltonian. A special case is the (well-known) invariance of the uniform Bernoulli measure under surjective cellular automata, which corresponds to the conservation of the trivial Hamiltonian. As an application, we obtain results indicating the lack of (non-trivial) Gibbs or Markov invariant measures for "sufficiently chaotic" cellular automata. We discuss the relevance of the randomization property of algebraic cellular automata to the problem of approach to macroscopic equilibrium, and pose several open questions. As an aside, a shift-invariant pre-image of a Gibbs measure under a pre-injective factor map between shifts of finite type turns out to be always a Gibbs measure. We provide a sufficient condition under which the image of a Gibbs measure under a pre-injective factor map is not a Gibbs measure. We point out a potential application of pre-injective factor maps as a tool in the study of phase transitions in statistical mechanical models.Comment: 50 pages, 7 figure

    Cellular automata and Lyapunov exponents

    Full text link
    In this article we give a new definition of some analog of Lyapunov exponents for cellular automata . Then for a shift ergodic and cellular automaton invariant probability measure we establish an inequality between the entropy of the automaton, the entropy of the shift and the Lyapunov exponent

    Right-Permutative Cellular Automata on Topological Markov Chains

    Full text link
    In this paper we consider cellular automata (G,Φ)(\mathfrak{G},\Phi) with algebraic local rules and such that G\mathfrak{G} is a topological Markov chain which has a structure compatible to this local rule. We characterize such cellular automata and study the convergence of the Ces\`aro mean distribution of the iterates of any probability measure with complete connections and summable decay.Comment: 16 pages, 2 figure. A new version with improved redaction of Theorem 6.3(i)) to clearify its consequence

    Some properties of cellular automata with equicontinuity points

    Full text link
    We investigate topological and ergodic properties of cellular automata having equicontinuity points. In this class surjectivity on a transitive SFT implies existence of a dense set of periodic points. Our main result is that under the action of such an automaton any shift ergodic measure converges in Cesaro Mean

    Probabilistic cellular automata, invariant measures, and perfect sampling

    Get PDF
    A probabilistic cellular automaton (PCA) can be viewed as a Markov chain. The cells are updated synchronously and independently, according to a distribution depending on a finite neighborhood. We investigate the ergodicity of this Markov chain. A classical cellular automaton is a particular case of PCA. For a 1-dimensional cellular automaton, we prove that ergodicity is equivalent to nilpotency, and is therefore undecidable. We then propose an efficient perfect sampling algorithm for the invariant measure of an ergodic PCA. Our algorithm does not assume any monotonicity property of the local rule. It is based on a bounding process which is shown to be also a PCA. Last, we focus on the PCA Majority, whose asymptotic behavior is unknown, and perform numerical experiments using the perfect sampling procedure
    • …
    corecore