19 research outputs found

    ν-SVM solutions of constrained lasso and elastic net

    Full text link
    Many important linear sparse models have at its core the Lasso problem, for which the GLMNet algorithm is often considered as the current state of the art. Recently M. Jaggi has observed that Constrained Lasso (CL) can be reduced to an SVM-like problem, for which the LIBSVM library provides very efficient algorithms. This suggests that it could also be used advantageously to solve CL. In this work we will refine Jaggi’s arguments to reduce CL as well as constrained Elastic Net to a Nearest Point Problem, which in turn can be rewritten as an appropriate ν-SVM problem solvable by LIBSVM. We will also show experimentally that the well-known LIBSVM library results in a faster convergence than GLMNet for small problems and also, if properly adapted, for larger ones. Screening is another ingredient to speed up solving Lasso. Shrinking can be seen as the simpler alternative of SVM to screening and we will discuss how it also may in some cases reduce the cost of an SVM-based CL solutionWith partial support from Spanish government grants TIN2013-42351-P, TIN2016-76406-P, TIN2015-70308-REDT and S2013/ICE-2845 CASI-CAM-CM; work also supported by project FACIL–Ayudas Fundación BBVA a Equipos de Investigación Científica 2016 and the UAM–ADIC Chair for Data Science and Machine Learning. The first author is also supported by the FPU–MEC grant AP-2012-5163. We gratefully acknowledge the use of the facilities of Centro de Computación Científica (CCC) at UAM and thank Red Eléctrica de España for kindly supplying wind energy dat

    Geometric Approach to Support Vector Machines Learning for Large Datasets

    Get PDF
    The dissertation introduces Sphere Support Vector Machines (SphereSVM) and Minimal Norm Support Vector Machines (MNSVM) as the new fast classification algorithms that use geometrical properties of the underlying classification problems to efficiently obtain models describing training data. SphereSVM is based on combining minimal enclosing ball approach, state of the art nearest point problem solvers and probabilistic techniques. The blending of the three speeds up the training phase of SVMs significantly and reaches similar (i.e., practically the same) accuracy as the other classification models over several big and large real data sets within the strict validation frame of a double (nested) cross-validation (CV). MNSVM is further simplification of SphereSVM algorithm. Here, relatively complex classification task was converted into one of the simplest geometrical problems -- minimal norm problem. This resulted in additional speedup compared to SphereSVM. The results shown are promoting both SphereSVM and MNSVM as outstanding alternatives for handling large and ultra-large datasets in a reasonable time without switching to various parallelization schemes for SVMs algorithms proposed recently. The variants of both algorithms, which work without explicit bias term, are also presented. In addition, other techniques aiming to improve the time efficiency are discussed (such as over-relaxation and improved support vector selection scheme). Finally, the accuracy and performance of all these modifications are carefully analyzed and results based on nested cross-validation procedure are shown

    SimpleMKL

    Get PDF
    International audienceMultiple kernel learning aims at simultaneously learning a kernel and the associated predictor in supervised learning settings. For the support vector machine, an efficient and general multiple kernel learning (MKL) algorithm, based on semi-infinite linear progamming, has been recently proposed. This approach has opened new perspectives since itmakes the MKL approach tractable for large-scale problems, by iteratively using existing support vector machine code. However, it turns out that this iterative algorithm needs numerous iterations for converging towards a reasonable solution. In this paper, we address the MKL problem through an adaptive 2-norm regularization formulation that encourages sparse kernel combinations. Apart from learning the combination, we solve a standard SVM optimization problem, where the kernel is defined as a linear combination of multiple kernels. We propose an algorithm, named SimpleMKL, for solving this MKL problem and provide a new insight on MKL algorithms based on mixed-norm regularization by showing that the two approaches are equivalent. Furthermore, we show how SimpleMKL can be applied beyond binary classification, for problems like regression, clustering (one-class classification) or multiclass classification. Ex- perimental results show that the proposed algorithm converges rapidly and that its efficiency compares favorably to other MKL algorithms. Finally, we illustrate the usefulness of MKL for some regressors based on wavelet kernels and on some model selection problems related to multiclass classification problems. A SimpleMKL Toolbox is available at http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.htm

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well
    corecore