3,092 research outputs found

    A Generalised Twinning Property for Minimisation of Cost Register Automata

    Get PDF
    Weighted automata (WA) extend finite-state automata by associating with transitions weights from a semiring S, defining functions from words to S. Recently, cost register automata (CRA) have been introduced as an alternative model to describe any function realised by a WA by means of a deterministic machine. Unambiguous WA over a monoid (M, ⊗) can equivalently be described by cost register automata whose registers take their values in M, and are updated by operations of the form x: = y ⊗ c, with c ∈ M. This class is denoted by CRA⊗c(M). We introduce a twinning property and a bounded variation property parametrised by an integer k, such that the corresponding notions introduced originally by Choffrut for finite-state transducers are obtained for k = 1. Given an unambiguous weighted automaton W over an infinitary group (G, ⊗) realizing some function f, we prove that the three following properties are equivalent: i) W satisfies the twinning property of order k, ii) f satisfies the k-bounded variation property, and iii) f can be described by a CRA⊗c(G) with at most k registers. In the spirit of tranducers, we actually prove this result in a more general setting by considering machines over the semiring of finite sets of elements from (G, ⊗): the three properties are still equivalent for such finite-valued weighted automata, that is the ones associating with words subsets of G of cardinality at most ℓ, for some natural ℓ. Moreover, we show that if the operation ⊗ of G is commutative and computable, then one can decide whether a WA satisfies the twinning property of order k. As a corollary, this allows to decide the register minimisation problem for the class CRA⊗c(G). Last, we prove that a similar result holds for finite-valued finite-state transducers, and that the register minimisation problem for the class CRA.c (B*) is Pspace-complete

    Weak MSO+U with Path Quantifiers over Infinite Trees

    Full text link
    This paper shows that over infinite trees, satisfiability is decidable for weak monadic second-order logic extended by the unbounding quantifier U and quantification over infinite paths. The proof is by reduction to emptiness for a certain automaton model, while emptiness for the automaton model is decided using profinite trees.Comment: version of an ICALP 2014 paper with appendice

    Automata Minimization: a Functorial Approach

    Full text link
    In this paper we regard languages and their acceptors - such as deterministic or weighted automata, transducers, or monoids - as functors from input categories that specify the type of the languages and of the machines to categories that specify the type of outputs. Our results are as follows: A) We provide sufficient conditions on the output category so that minimization of the corresponding automata is guaranteed. B) We show how to lift adjunctions between the categories for output values to adjunctions between categories of automata. C) We show how this framework can be instantiated to unify several phenomena in automata theory, starting with determinization, minimization and syntactic algebras. We provide explanations of Choffrut's minimization algorithm for subsequential transducers and of Brzozowski's minimization algorithm in this setting.Comment: journal version of the CALCO 2017 paper arXiv:1711.0306

    Hyper-Minimization for Deterministic Weighted Tree Automata

    Full text link
    Hyper-minimization is a state reduction technique that allows a finite change in the semantics. The theory for hyper-minimization of deterministic weighted tree automata is provided. The presence of weights slightly complicates the situation in comparison to the unweighted case. In addition, the first hyper-minimization algorithm for deterministic weighted tree automata, weighted over commutative semifields, is provided together with some implementation remarks that enable an efficient implementation. In fact, the same run-time O(m log n) as in the unweighted case is obtained, where m is the size of the deterministic weighted tree automaton and n is its number of states.Comment: In Proceedings AFL 2014, arXiv:1405.527
    corecore