481 research outputs found

    On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks

    Get PDF
    This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures

    Optimal Number of Nodes Deployment Method in Corona-Based WSN

    Get PDF
    Wireless sensor networks (WSNs) consist of several nodes with limited and non-rechargeable power resources. Therefore, energy efficiency and network lifetime depend on the utilize way of sensor nodes. Recently, some methods and strategies have been employed in this regard. Most of them could improve network lifespan to an acceptable level. Energy hole is one of inherent problems which can decrease the network lifetime to 89%. In multi-hop WSNs, the sensors located closer to sink must relay more data packets in comparison with other ones, thus their power supplies will be exhausted earlier than other nodes. Whereas, the sensor nodes belonging to other layers still have required energy for transmitting their data packets. This asynchronous energy depletion is considered as a problem. In this paper, we present a mathematical model for non-uniform node deployment for corona-based WSNs. According to results, Optimal Number of Nodes Deployment Method (ONNDM) enhance the network lifetime via balancing energy consumption and workload among coronas. In ONNDM, the optimum number of nodes in each corona is obtained by a mathematical formula, which can outperform other proposed strategies

    Energy hole mitigation through cooperative transmission in wireless sensor networks

    Get PDF
    The energy balancing capability of cooperative communication is utilized to solve the energy hole problem in wireless sensor networks. We first propose a cooperative transmission strategy, where intermediate nodes participate in two cooperative multi-input single-output (MISO) transmissions with the node at the previous hop and a selected node at the next hop, respectively. Then, we study the optimization problems for power allocation of the cooperative transmission strategy by examining two different approaches: network lifetime maximization (NLM) and energy consumption minimization (ECM). For NLM, the numerical optimal solution is derived and a searching algorithm for suboptimal solution is provided when the optimal solution does not exist. For ECM, a closed-form solution is obtained. Numerical and simulation results show that both the approaches have much longer network lifetime than SISO transmission strategies and other cooperative communication schemes. Moreover, NLM which features energy balancing outperforms ECM which focuses on energy efficiency, in the network lifetime sense

    Load-Similar Node Distribution for Prolonging Network Lifetime in PMRC-Based Wireless Sensor Networks

    Full text link
    In this paper, the energy hole problem in Progressive Multi-hop Rotational Clustered (PMRC)-based wireless sensor networks (WSNs) is studied. We first analyze the traffic load distribution in PMRC-based WSNs. Based on the analysis, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to solve the energy hole problem in PMRC-based WSNs. Simulation results demonstrate that the load-similar node distribution strategy significantly prolongs network lifetime than uniform node distribution and an existing nonuniform node distribution strategies. The analysis model and the proposed load-similar node distribution strategy have the potential to be applied to other multi-hop WSN structures

    Energy-Efficient Algorithm for Sensor Networks with Non-Uniform Maximum Transmission Range

    Get PDF
    In wireless sensor networks (WSNs), the energy hole problem is a key factor affecting the network lifetime. In a circular multi-hop sensor network (modeled as concentric coronas), the optimal transmission ranges of all coronas can effectively improve network lifetime. In this paper, we investigate WSNs with non-uniform maximum transmission ranges, where sensor nodes deployed in different regions may differ in their maximum transmission range. Then, we propose an Energy-efficient algorithm for Non-uniform Maximum Transmission range (ENMT), which can search approximate optimal transmission ranges of all coronas in order to prolong network lifetime. Furthermore, the simulation results indicate that ENMT performs better than other algorithms

    An Energy Efficient Self-healing Mechanism for Long Life Wireless Sensor Networks

    Full text link
    In this paper, we provide an energy efficient self- healing mechanism for Wireless Sensor Networks. The proposed solution is based on our probabilistic sentinel scheme. To reduce energy consumption while maintaining good connectivity between sentinel nodes, we compose our solution on two main concepts, node adaptation and link adaptation. The first algorithm uses node adaptation technique and permits to distributively schedule nodes activities and select a minimum subset of active nodes (sentry) to monitor the interest region. And secondly, we in- troduce a link control algorithm to ensure better connectiv- ity between sentinel nodes while avoiding outliers appearance. Without increasing control messages overhead, performances evaluations show that our solution is scalable with a steady energy consumption. Simulations carried out also show that the proposed mechanism ensures good connectivity between sentry nodes while considerably reducing the total energy spent.Comment: 6 pages, 8 figures. arXiv admin note: text overlap with arXiv:1309.600

    Multiple Mobile Sinks Positioning in Wireless Sensor Networks for Buildings

    Get PDF
    Best Paper AwardInternational audienceReal deployment of wireless sensor networks inside build- ings is a very challenging. In fact, in such networks, a large number of small sensor devices suffer from limited energy supply. These sensors have to observe and monitor their in-door environment, and then to report the data collected to a nearest information collector, referred to as the sink node. Sensor nodes which are far away from the sink relay their data via multiple hops to reach the sink. This way of communication makes the sensors near the sink deplete their energy much faster than distant nodes because they carry heavier traffic. So what is known as a hole appears around the sink and prevents distant nodes to send their data. Consequently the network lifetime ends prematurely. One efficient solution for this problem is to relocate sinks. In this work, we aim to find the best way to relocate sinks by determining their optimal locations and the duration of their sojourn time. So, we propose an Integer Linear Programming for multiple mobile sinks which directly maximizes the network lifetime instead of minimizing the energy consumption or maximizing the residual energy, which is what was done in previous solutions. Simulations results show that with our solution, the network lifetime is extended and the energy depletion is more balanced among the nodes. We also show that relocating mobile sinks inside a whole network is more efficient than relocating mobile sinks inside different clusters and we can achieve almost 52 % network lifetime improvement in our experiments
    • …
    corecore