11,918 research outputs found

    Energy Detection of Unknown Signals over Cascaded Fading Channels

    Full text link
    Energy detection is a favorable mechanism in several applications relating to the identification of deterministic unknown signals such as in radar systems and cognitive radio communications. The present work quantifies the detrimental effects of cascaded multipath fading on energy detection and investigates the corresponding performance capability. A novel analytic solution is firstly derived for a generic integral that involves a product of the Meijer G−G-function, the Marcum Q−Q-function and arbitrary power terms. This solution is subsequently employed in the derivation of an exact closed-form expression for the average probability of detection of unknown signals over NN*Rayleigh channels. The offered results are also extended to the case of square-law selection, which is a relatively simple and effective diversity method. It is shown that the detection performance is considerably degraded by the number of cascaded channels and that these effects can be effectively mitigated by a non-substantial increase of diversity branches.Comment: 12 page

    Analysis of energy detection of unknown signals under Beckmann fading channels

    Get PDF
    (c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The Beckmann fading is a general multipath fading model which includes Rice, Hoyt and Rayleigh fading as particular cases. However, the generality of the Beckmann fading also implies a significant increased mathematical complexity. Thus, relatively few analytical results have been reported for this otherwise useful fading model. The performance of energy detection for multi-branch receivers operating under Beckmann fading is here studied, and the inherent analytical complexity is here circumvented by the derivation of a closed-form expression for the generalized moment generating function (MGF) of the received signal-to-noise ratio (SNR), which is a new and useful result, as it is key for evaluating the receiver operating characteristics. The impact of fading severity on the probability of missed detection is shown to be less critical as the SNR decreases. Monte Carlo simulations have been carried out in order to validate the obtained theoretical expressions.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Proyecto MINECO-FEDER TEC2013-42711-R y TEC2013-44442-P. Junta de Andalucía P11-TIC-7109

    Analytic solutions to a Marcum Q-function-based integral and application in energy detection of unknown signals over multipath fading channels

    Full text link
    This work presents analytic solutions for a useful integral in wireless communications, which involves the Marcum Q−Q{-}function in combination with an exponential function and arbitrary power terms. The derived expressions have a rather simple algebraic representation which renders them convenient both analytically and computationally. Furthermore, they can be useful in wireless communications and particularly in the context of cognitive radio communications and radar systems, where this integral is often encountered. To this end, we derive novel expressions for the probability of detection in energy detection based spectrum sensing over η−μ\eta{-}\mu fading channels. These expressions are given in closed-form and are subsequently employed in analyzing the effects of generalised multipath fading conditions in cognitive radio systems. As expected, it is shown that the detector is highly dependent upon the severity of fading conditions as even slight variation of the fading parameters affect the corresponding performance significantly.Comment: Latest/Preprint Versio

    Performance Analysis for Multichannel Reception of OOFSK Signaling

    Full text link
    In this paper, the error performance of on-off frequency shift keying (OOFSK) modulation over fading channels is analyzed when the receiver is equipped with multiple antennas. The analysis is conducted in two cases: the coherent scenario where the fading is perfectly known at the receiver, and the noncoherent scenario where neither the receiver nor the transmitter knows the fading coefficients. For both cases, the maximum a posteriori probability (MAP) detection rule is derived and analytical probability of error expressions are obtained. The effect of fading correlation among the receiver antennas is also studied. Simulation results indicate that for sufficiently low duty cycle values, lower probability of error values with respect to FSK signaling are achieved. Equivalently, when compared to FSK modulation, OOFSK with low duty cycle requires less energy to achieve the same probability of error, which renders this modulation a more energy efficient transmission technique.Comment: Proc. of the 2007 IEEE Wireless Communications and Networking Conferenc

    Solutions to Integrals Involving the Marcum Q-Function and Applications

    Full text link
    Novel analytic solutions are derived for integrals that involve the generalized Marcum Q-function, exponential functions and arbitrary powers. Simple closed-form expressions are also derived for the specific cases of the generic integrals. The offered expressions are both convenient and versatile, which is particularly useful in applications relating to natural sciences and engineering, including wireless cpmmunications and signal processing. To this end, they are employed in the derivation of the channel capacity for fixed rate and channel inversion in the case of correlated multipath fading and switched diversity.Comment: 15 Pages, 2 Figure
    • …
    corecore