401 research outputs found

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios

    A quantum-resistant advanced metering infrastructure

    Get PDF
    This dissertation focuses on discussing and implementing a Quantum-Resistant Advanced Metering Infrastructure (QR-AMI) that employs quantum-resistant asymmetric and symmetric cryptographic schemes to withstand attacks from both quantum and classical computers. The proposed solution involves the integration of Quantum-Resistant Dedicated Cryptographic Modules (QR-DCMs) within Smart Meters (SMs). These QR-DCMs are designed to embed quantum-resistant cryptographic schemes suitable for AMI applications. In this sense, it investigates quantum-resistant asymmetric cryptographic schemes based on strong cryptographic principles and a lightweight approach for AMIs. In addition, it examines the practical deployment of quantum-resistant schemes in QR-AMIs. Two candidates from the National Institute of Standards and Technology (NIST) post-quantum cryptography (PQC) standardization process, FrodoKEM and CRYSTALS-Kyber, are assessed due to their adherence to strong cryptographic principles and lightweight approach. The feasibility of embedding these schemes within QRDCMs in an AMI context is evaluated through software implementations on low-cost hardware, such as microcontroller and processor, and hardware/software co-design implementations using System-on-a-Chip (SoC) devices with Field-Programmable Gate Array (FPGA) components. Experimental results show that the execution time for FrodoKEM and CRYSTALS-Kyber schemes on SoC FPGA devices is at least one-third faster than software implementations. Furthermore, the achieved execution time and resource usage demonstrate the viability of these schemes for AMI applications. The CRYSTALS-Kyber scheme appears to be a superior choice in all scenarios, except when strong cryptographic primitives are necessitated, at least theoretically. Due to the lack of off-the-shelf SMs supporting quantum-resistant asymmetric cryptographic schemes, a QRDCM embedding quantum-resistant scheme is implemented and evaluated. Regarding hardware selection for QR-DCMs, microcontrollers are preferable in situations requiring reduced processing power, while SoC FPGA devices are better suited for those demanding high processing power. The resource usage and execution time outcomes demonstrate the feasibility of implementing AMI based on QR-DCMs (i.e., QR-AMI) using microcontrollers or SoC FPGA devices.Esta tese de doutorado foca na discussão e implementação de uma Infraestrutura de Medição Avançada com Resistência Quântica (do inglês, Quantum-Resistant Advanced Metering Infrastructure - QR-AMI), que emprega esquemas criptográficos assimétricos e simétricos com resistência quântica para suportar ataques proveniente tanto de computadores quânticos, como clássicos. A solução proposta envolve a integração de um Módulo Criptográfico Dedicado com Resistência Quântica (do inglês, Quantum-Resistant Dedicated Cryptographic Modules - QR-DCMs) com Medidores Inteligentes (do inglês, Smart Meter - SM). Os QR-DCMs são projetados para embarcar esquemas criptográficos com resistência quântica adequados para aplicação em AMI. Nesse sentido, é investigado esquemas criptográficos assimétricos com resistência quântica baseado em fortes princípios criptográficos e abordagem com baixo uso de recursos para AMIs. Além disso, é analisado a implantação prática de um esquema com resistência quântica em QR-AMIs. Dois candidatos do processo de padronização da criptografia pós-quântica (do inglês, post-quantum cryptography - PQC) do Instituto Nacional de Padrões e Tecnologia (do inglês, National Institute of Standards and Technology - NIST), FrodoKEM e CRYSTALS-Kyber, são avaliados devido à adesão a fortes princípios criptográficos e abordagem com baixo uso de recursos. A viabilidade de embarcar esses esquemas em QR-DCMs em um contexto de AMI é avaliado por meio de implementação em software em hardwares de baixo custo, como um microcontrolador e processador, e implementações conjunta hardware/software usando um sistema em um chip (do inglês, System-on-a-Chip - SoC) com Arranjo de Porta Programável em Campo (do inglês, Field-Programmable Gate Array - FPGA). Resultados experimentais mostram que o tempo de execução para os esquemas FrodoKEM e CRYSTALSKyber em dispositivos SoC FPGA é, ao menos, um terço mais rápido que implementações em software. Além disso, os tempos de execuções atingidos e o uso de recursos demonstram a viabilidade desses esquemas para aplicações em AMI. O esquema CRYSTALS-Kyber parece ser uma escolha superior em todos os cenários, exceto quando fortes primitivas criptográficas são necessárias, ao menos teoricamente. Devido à falta de SMs no mercado que suportem esquemas criptográficos assimétricos com resistência quântica, um QR-DCM embarcando esquemas com resistência quântica é implementado e avaliado. Quanto à escolha do hardware para os QR-DCMs, microcontroladores são preferíveis em situações que requerem poder de processamento reduzido, enquanto dispositivos SoC FPGA são mais adequados para quando é demandado maior poder de processamento. O uso de recurso e o resultado do tempo de execução demonstram a viabilidade da implementação de AMI baseada em QR-DCMs, ou seja, uma QR-AMI, usando microcontroladores e dispositivos SoC FPGA

    Contributions to Securing Software Updates in IoT

    Get PDF
    The Internet of Things (IoT) is a large network of connected devices. In IoT, devices can communicate with each other or back-end systems to transfer data or perform assigned tasks. Communication protocols used in IoT depend on target applications but usually require low bandwidth. On the other hand, IoT devices are constrained, having limited resources, including memory, power, and computational resources. Considering these limitations in IoT environments, it is difficult to implement best security practices. Consequently, network attacks can threaten devices or the data they transfer. Thus it is crucial to react quickly to emerging vulnerabilities. These vulnerabilities should be mitigated by firmware updates or other necessary updates securely. Since IoT devices usually connect to the network wirelessly, such updates can be performed Over-The-Air (OTA). This dissertation presents contributions to enable secure OTA software updates in IoT. In order to perform secure updates, vulnerabilities must first be identified and assessed. In this dissertation, first, we present our contribution to designing a maturity model for vulnerability handling. Next, we analyze and compare common communication protocols and security practices regarding energy consumption. Finally, we describe our designed lightweight protocol for OTA updates targeting constrained IoT devices. IoT devices and back-end systems often use incompatible protocols that are unable to interoperate securely. This dissertation also includes our contribution to designing a secure protocol translator for IoT. This translation is performed inside a Trusted Execution Environment (TEE) with TLS interception. This dissertation also contains our contribution to key management and key distribution in IoT networks. In performing secure software updates, the IoT devices can be grouped since the updates target a large number of devices. Thus, prior to deploying updates, a group key needs to be established among group members. In this dissertation, we present our designed secure group key establishment scheme. Symmetric key cryptography can help to save IoT device resources at the cost of increased key management complexity. This trade-off can be improved by integrating IoT networks with cloud computing and Software Defined Networking (SDN).In this dissertation, we use SDN in cloud networks to provision symmetric keys efficiently and securely. These pieces together help software developers and maintainers identify vulnerabilities, provision secret keys, and perform lightweight secure OTA updates. Furthermore, they help devices and systems with incompatible protocols to be able to interoperate

    RoSym: Robust Symmetric Key Based IoT Software Upgrade Over-the-Air

    Get PDF
    Internet of Things (IoT) firmware upgrade has turned out to be a challenging task with respect to security. While Over-The-Air (OTA) software upgrade possibility is an essential feature to achieve security, it is also most sensitive to attacks and lots of different firmware upgrade attacks have been presented in the literature. Several security solutions exist to tackle these problems. We observe though that most prior art solutions are public key-based, they are not flexible with respect to firmware image distribution principles and it is challenging to make a design with good Denial-Of-Service (DoS) attacks resistance. Apart from often being rather resource demanding, a limitation with current public key-based solutions is that they are not quantum computer resistant. Hence, in this paper, we take a new look into the firmware upgrade problem and propose RoSym, a secure, firmware distribution principle agnostic, and DoS protected upgrade mechanism purely based on symmetric cryptography. We present an experimental evaluation on a real testbed environment for the scheme. The results show that the scheme is efficient in comparison to other state of the art solutions. We also make a formal security verification of RoSym showing that it is robust against different attacks

    5G RF Spectrum-based Cryptographic Pseudo Random Number Generation for IoT Security

    Get PDF
    This thesis presents a novel approach for generating truly random num- bers in 5G wireless communication systems using the radio frequency (RF) spectrum. The proposed method leverages variations in the RF spectrum to create entropy, which is then used to generate truly random numbers. This approach is based on channel state information (CSI) measured at the receiver in 5G systems and utilize the variability of the CSI to extract entropy for random number generation. The proposed method has several advantages over traditional random number generators, including the use of a natural source of entropy in 5G wireless communication systems, min- imal hardware and computational resource requirements, and a high level of security due to the use of physical characteristics of the wireless chan- nel that are difficult for attackers to predict or manipulate. Simulation re- sults demonstrate that the proposed method generates high-entropy random numbers, passes statistical randomness tests, and outperforms traditional random number generators regarding energy consumption and computa- tional complexity. This approach has the potential to improve the security of cryptographic protocols in 5G networks

    Sensor-based ICT Systems for Smart Societies

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore