48 research outputs found

    One-Way Reversible and Quantum Finite Automata with Advice

    Full text link
    We examine the characteristic features of reversible and quantum computations in the presence of supplementary external information, known as advice. In particular, we present a simple, algebraic characterization of languages recognized by one-way reversible finite automata augmented with deterministic advice. With a further elaborate argument, we prove a similar but slightly weaker result for bounded-error one-way quantum finite automata with advice. Immediate applications of those properties lead to containments and separations among various language families when they are assisted by appropriately chosen advice. We further demonstrate the power and limitation of randomized advice and quantum advice when they are given to one-way quantum finite automata.Comment: A4, 10pt, 1 figure, 31 pages. This is a complete version of an extended abstract appeared in the Proceedings of the 6th International Conference on Language and Automata Theory and Applications (LATA 2012), March 5-9, 2012, A Coruna, Spain, Lecture Notes in Computer Science, Springer-Verlag, Vol.7183, pp.526-537, 201

    Optimal simulations between unary automata

    Get PDF
    We consider the problem of computing the costs---{ in terms of states---of optimal simulations between different kinds of finite automata recognizing unary languages. Our main result is a tight simulation of unary n-state two-way nondeterministic automata by O(enlnn)O({{\rm e}^{\sqrt{{n}\ln{n}}}})-state one-way deterministic automata. In addition, we show that, given a unary n-state two-way nondeterministic automaton, one can construct an equivalent O(n^2)-state two-way nondeterministic automaton performing both input head reversals and nondeterministic choices only at the ends of the input tape. Further results on simulating unary one-way alternating finite automata are also discussed

    Memoization for Unary Logic Programming: Characterizing PTIME

    Full text link
    We give a characterization of deterministic polynomial time computation based on an algebraic structure called the resolution semiring, whose elements can be understood as logic programs or sets of rewriting rules over first-order terms. More precisely, we study the restriction of this framework to terms (and logic programs, rewriting rules) using only unary symbols. We prove it is complete for polynomial time computation, using an encoding of pushdown automata. We then introduce an algebraic counterpart of the memoization technique in order to show its PTIME soundness. We finally relate our approach and complexity results to complexity of logic programming. As an application of our techniques, we show a PTIME-completeness result for a class of logic programming queries which use only unary function symbols.Comment: Soumis {\`a} LICS 201

    Converting Nondeterministic Two-Way Automata into Small Deterministic Linear-Time Machines

    Full text link
    In 1978 Sakoda and Sipser raised the question of the cost, in terms of size of representations, of the transformation of two-way and one-way nondeterministic automata into equivalent two-way deterministic automata. Despite all the attempts, the question has been answered only for particular cases (e.g., restrictions of the class of simulated automata or of the class of simulating automata). However the problem remains open in the general case, the best-known upper bound being exponential. We present a new approach in which unrestricted nondeterministic finite automata are simulated by deterministic models extending two-way deterministic finite automata, paying a polynomial increase of size only. Indeed, we study the costs of the conversions of nondeterministic finite automata into some variants of one-tape deterministic Turing machines working in linear time, namely Hennie machines, weight-reducing Turing machines, and weight-reducing Hennie machines. All these variants are known to share the same computational power: they characterize the class of regular languages

    Automata theory and formal languages

    Get PDF
    These lecture notes present some basic notions and results on Automata Theory, Formal Languages Theory, Computability Theory, and Parsing Theory. I prepared these notes for a course on Automata, Languages, and Translators which I am teaching at the University of Roma Tor Vergata. More material on these topics and on parsing techniques for context-free languages can be found in standard textbooks such as [1, 8, 9]. The reader is encouraged to look at those books. A theorem denoted by the triple k.m.n is in Chapter k and Section m, and within that section it is identified by the number n. Analogous numbering system is used for algorithms, corollaries, definitions, examples, exercises, figures, and remarks. We use ‘iff’ to mean ‘if and only if’. Many thanks to my colleagues of the Department of Informatics, Systems, and Production of the University of Roma Tor Vergata. I am also grateful to my stu- dents and co-workers and, in particular, to Lorenzo Clemente, Corrado Di Pietro, Fulvio Forni, Fabio Lecca, Maurizio Proietti, and Valerio Senni for their help and encouragement. Finally, I am grateful to Francesca Di Benedetto, Alessandro Colombo, Donato Corvaglia, Gioacchino Onorati, and Leonardo Rinaldi of the Aracne Publishing Com- pany for their kind cooperation
    corecore