8,241 research outputs found

    The Potential of an Enhanced Cooperation Measure in the EAFRD (2014-2020): the case of Ireland

    Get PDF
    This report was funded by the Department of Agriculture, Food and the Marine (DAFM) through the National Rural Network (February-May, 2012).The current Proposal for a Regulation of the European Parliament and of the Council on support for Rural Development by the European Agricultural Fund for Rural Development (EAFRD) includes Article (36) Cooperation that is potentially instrumental for realising the objectives of FOOD HARVEST 20204. The purpose of this report is to assess the scope and potential of Article 36 in the context of Irish agriculture and its findings have four key aspects. First, the main areas of confluence between Article 36 and primary policy objectives as set out in Food Harvest 2020 are identified. Second, a range of cooperation categories and types relevant to Article 36, many of which are operational in Ireland, are profiled. Third, drawing from case-studies of these co-operation types5, the operational characteristics of each type are presented, focusing on compatibility with Article 36. Possible supports that would encourage and assist the formation and operation of the cooperation types on a broad scale into the future, and also any possible constraints that would prevent success, are indicated. Fourth, a brief discussion of some key implementation considerations arising from the analysis overall is presented.Department of Agriculture, Food and the Marin

    A study of systems implementation languages for the POCCNET system

    Get PDF
    The results are presented of a study of systems implementation languages for the Payload Operations Control Center Network (POCCNET). Criteria are developed for evaluating the languages, and fifteen existing languages are evaluated on the basis of these criteria

    Securing Network Processors with Hardware Monitors

    Get PDF
    As an essential part of modern society, the Internet has fundamentally changed our lives during the last decade. Novel applications and technologies, such as online shopping, social networking, cloud computing, mobile networking, etc, have sprung up at an astonishing pace. These technologies not only influence modern life styles but also impact Internet infrastructure. Numerous new network applications and services require better programmability and flexibility for network devices, such as routers and switches. Since traditional fixed function network routers based on application specific integrated circuits (ASICs) have difficulty keeping pace with the growing demands of next-generation Internet applications, there is an ongoing shift in the industry toward implementing network devices using programmable network processors (NPs). While network processors offer great benefits in terms of flexibility, their reprogrammable nature exposes potential security risks. Similar to network end-systems, such as general-purpose computers, software-based network processors have security vulnerabilities that can be attacked remotely. Recent research has shown that a new type of data plane attack is able to modify the functionality of a network processor and cause a denial-of-service (DoS) attack by sending a single malformed UDP packet. Since this attack relies solely on data plane access and does not need access to the control plane, it can be particularly difficult to control. Hardware security monitors have been introduced to identify and eliminate these malicious packets before they can propagate and cause devastating effects in the network. However, previous work on hardware monitors only focus on single core systems with static (or very slowly changing) workloads. In network processors that use up to hundreds of parallel processor cores and have processing workloads that can change dynamically based on the network traffic, the realization of a complete multicore hardware monitoring system remains a critical challenge. Our research work in this thesis provides a comprehensive solution to this problem. Our first contribution is the design and prototype implementation of a Scalable Hardware Monitoring Grid (SHMG). This scalable architecture balances area cost and performance overhead by using a clustered approach for multicore NP systems. In order to adapt to dynamically changing network traffic, a resource reallocation algorithm is designed to reassign the processing resources in SHMG to different network applications at runtime. An evaluation of the prototype SHMG on an Altera DE4 board demonstrates low resource and performance overheads. The functionality and performance of a runtime resource reallocation algorithm are tested using a simulation environment. A second significant contribution of this work is a network system-level security solution for multicore network processors with hardware monitors. It addresses two key problems: (1) how to securely manage and reprogram processor cores and monitors in a deployed router in the network, and (2) how to prevent the large number of identical router devices in the network from an attack that can circumvent one specific monitoring system and lead to Internet-scale failures. A Secure Dynamic Multicore Hardware Monitoring System (SDMMon) is designed based on cryptographic principles and suitable key management to ensure the secure installation of processor binaries and monitor graphs. We present a Merkle tree based parameterizable high performance hash function that can be configured to perform a variety of functions in different devices via a 32-bit configuration parameter. A prototype system composed of both the SDMMon and the parameterizable hash is implemented and evaluated on an Altera DE4 board. Finally, a fully-functional, comprehensive Multicore NP Security Platform, which integrates both the SHMG and the SDMMon security features, has been implemented on an Altera DE5 board
    • …
    corecore