193 research outputs found

    Accelerating Network Communication and I/O in Scientific High Performance Computing Environments

    Get PDF
    High performance computing has become one of the major drivers behind technology inventions and science discoveries. Originally driven through the increase of operating frequencies and technology scaling, a recent slowdown in this evolution has led to the development of multi-core architectures, which are supported by accelerator devices such as graphics processing units (GPUs). With the upcoming exascale era, the overall power consumption and the gap between compute capabilities and I/O bandwidth have become major challenges. Nowadays, the system performance is dominated by the time spent in communication and I/O, which highly depends on the capabilities of the network interface. In order to cope with the extreme concurrency and heterogeneity of future systems, the software ecosystem of the interconnect needs to be carefully tuned to excel in reliability, programmability, and usability. This work identifies and addresses three major gaps in today's interconnect software systems. The I/O gap describes the disparity in operating speeds between the computing capabilities and second storage tiers. The communication gap is introduced through the communication overhead needed to synchronize distributed large-scale applications and the mixed workload. The last gap is the so called concurrency gap, which is introduced through the extreme concurrency and the inflicted learning curve posed to scientific application developers to exploit the hardware capabilities. The first contribution is the introduction of the network-attached accelerator approach, which moves accelerators into a "stand-alone" cluster connected through the Extoll interconnect. The novel communication architecture enables the direct accelerators communication without any host interactions and an optimal application-to-compute-resources mapping. The effectiveness of this approach is evaluated for two classes of accelerators: Intel Xeon Phi coprocessors and NVIDIA GPUs. The next contribution comprises the design, implementation, and evaluation of the support of legacy codes and protocols over the Extoll interconnect technology. By providing TCP/IP protocol support over Extoll, it is shown that the performance benefits of the interconnect can be fully leveraged by a broader range of applications, including the seamless support of legacy codes. The third contribution is twofold. First, a comprehensive analysis of the Lustre networking protocol semantics and interfaces is presented. Afterwards, these insights are utilized to map the LNET protocol semantics onto the Extoll networking technology. The result is a fully functional Lustre network driver for Extoll. An initial performance evaluation demonstrates promising bandwidth and message rate results. The last contribution comprises the design, implementation, and evaluation of two easy-to-use load balancing frameworks, which transparently distribute the I/O workload across all available storage system components. The solutions maximize the parallelization and throughput of file I/O. The frameworks are evaluated on the Titan supercomputing systems for three I/O interfaces. For example for large-scale application runs, POSIX I/O and MPI-IO can be improved by up to 50% on a per job basis, while HDF5 shows performance improvements of up to 32%

    Providing Insight into the Performance of Distributed Applications Through Low-Level Metrics

    Get PDF
    The field of high-performance computing (HPC) has always dealt with the bleeding edge of computational hardware and software to achieve the maximum possible performance for a wide variety of workloads. When dealing with brand new technologies, it can be difficult to understand how these technologies work and why they work the way they do. One of the more prevalent approaches to providing insight into modern hardware and software is to provide tools that allow developers to access low-level metrics about their performance. The modern HPC ecosystem supports a wide array of technologies, but in this work, I will be focusing on two particularly influential technologies: The Message Passing Interface (MPI), and Graphical Processing Units (GPUs).For many years, MPI has been the dominant programming paradigm in HPC. Indeed, over 90% of applications that are a part of the U.S. Exascale Computing Project plan to use MPI in some fashion. The MPI Standard provides programmers with a wide variety of methods to communicate between processes, along with several other capabilities. The high-level MPI Profiling Interface has been the primary method for profiling MPI applications since the inception of the MPI Standard, and more recently the low-level MPI Tool Information Interface was introduced.Accelerators like GPUs have been increasingly adopted as the primary computational workhorse for modern supercomputers. GPUs provide more parallelism than traditional CPUs through a hierarchical grid of lightweight processing cores. NVIDIA provides profiling tools for their GPUs that give access to low-level hardware metrics.In this work, I propose research in applying low-level metrics to both the MPI and GPU paradigms in the form of an implementation of low-level metrics for MPI, and a new method for analyzing GPU load imbalance with a synthetic efficiency metric. I introduce Software-based Performance Counters (SPCs) to expose internal metrics of the Open MPI implementation along with a new interface for exposing these counters to users and tool developers. I also analyze a modified load imbalance formula for GPU-based applications that uses low-level hardware metrics provided through nvprof in a hierarchical approach to take the internal load imbalance of the GPU into account

    Reconfigurable microarchitectures at the programmable logic interface

    Get PDF

    An FPGA implementation of an investigative many-core processor, Fynbos : in support of a Fortran autoparallelising software pipeline

    Get PDF
    Includes bibliographical references.In light of the power, memory, ILP, and utilisation walls facing the computing industry, this work examines the hypothetical many-core approach to finding greater compute performance and efficiency. In order to achieve greater efficiency in an environment in which Moore’s law continues but TDP has been capped, a means of deriving performance from dark and dim silicon is needed. The many-core hypothesis is one approach to exploiting these available transistors efficiently. As understood in this work, it involves trading in hardware control complexity for hundreds to thousands of parallel simple processing elements, and operating at a clock speed sufficiently low as to allow the efficiency gains of near threshold voltage operation. Performance is there- fore dependant on exploiting a new degree of fine-grained parallelism such as is currently only found in GPGPUs, but in a manner that is not as restrictive in application domain range. While removing the complex control hardware of traditional CPUs provides space for more arithmetic hardware, a basic level of control is still required. For a number of reasons this work chooses to replace this control largely with static scheduling. This pushes the burden of control primarily to the software and specifically the compiler, rather not to the programmer or to an application specific means of control simplification. An existing legacy tool chain capable of autoparallelising sequential Fortran code to the degree of parallelism necessary for many-core exists. This work implements a many-core architecture to match it. Prototyping the design on an FPGA, it is possible to examine the real world performance of the compiler-architecture system to a greater degree than simulation only would allow. Comparing theoretical peak performance and real performance in a case study application, the system is found to be more efficient than any other reviewed, but to also significantly under perform relative to current competing architectures. This failing is apportioned to taking the need for simple hardware too far, and an inability to implement static scheduling mitigating tactics due to lack of support for such in the compiler

    Parallel Architectures for Many-Core Systems-On-Chip in Deep Sub-Micron Technology

    Get PDF
    Despite the several issues faced in the past, the evolutionary trend of silicon has kept its constant pace. Today an ever increasing number of cores is integrated onto the same die. Unfortunately, the extraordinary performance achievable by the many-core paradigm is limited by several factors. Memory bandwidth limitation, combined with inefficient synchronization mechanisms, can severely overcome the potential computation capabilities. Moreover, the huge HW/SW design space requires accurate and flexible tools to perform architectural explorations and validation of design choices. In this thesis we focus on the aforementioned aspects: a flexible and accurate Virtual Platform has been developed, targeting a reference many-core architecture. Such tool has been used to perform architectural explorations, focusing on instruction caching architecture and hybrid HW/SW synchronization mechanism. Beside architectural implications, another issue of embedded systems is considered: energy efficiency. Near Threshold Computing is a key research area in the Ultra-Low-Power domain, as it promises a tenfold improvement in energy efficiency compared to super-threshold operation and it mitigates thermal bottlenecks. The physical implications of modern deep sub-micron technology are severely limiting performance and reliability of modern designs. Reliability becomes a major obstacle when operating in NTC, especially memory operation becomes unreliable and can compromise system correctness. In the present work a novel hybrid memory architecture is devised to overcome reliability issues and at the same time improve energy efficiency by means of aggressive voltage scaling when allowed by workload requirements. Variability is another great drawback of near-threshold operation. The greatly increased sensitivity to threshold voltage variations in today a major concern for electronic devices. We introduce a variation-tolerant extension of the baseline many-core architecture. By means of micro-architectural knobs and a lightweight runtime control unit, the baseline architecture becomes dynamically tolerant to variations

    Energy Demand Response for High-Performance Computing Systems

    Get PDF
    The growing computational demand of scientific applications has greatly motivated the development of large-scale high-performance computing (HPC) systems in the past decade. To accommodate the increasing demand of applications, HPC systems have been going through dramatic architectural changes (e.g., introduction of many-core and multi-core systems, rapid growth of complex interconnection network for efficient communication between thousands of nodes), as well as significant increase in size (e.g., modern supercomputers consist of hundreds of thousands of nodes). With such changes in architecture and size, the energy consumption by these systems has increased significantly. With the advent of exascale supercomputers in the next few years, power consumption of the HPC systems will surely increase; some systems may even consume hundreds of megawatts of electricity. Demand response programs are designed to help the energy service providers to stabilize the power system by reducing the energy consumption of participating systems during the time periods of high demand power usage or temporary shortage in power supply. This dissertation focuses on developing energy-efficient demand-response models and algorithms to enable HPC system\u27s demand response participation. In the first part, we present interconnection network models for performance prediction of large-scale HPC applications. They are based on interconnected topologies widely used in HPC systems: dragonfly, torus, and fat-tree. Our interconnect models are fully integrated with an implementation of message-passing interface (MPI) that can mimic most of its functions with packet-level accuracy. Extensive experiments show that our integrated models provide good accuracy for predicting the network behavior, while at the same time allowing for good parallel scaling performance. In the second part, we present an energy-efficient demand-response model to reduce HPC systems\u27 energy consumption during demand response periods. We propose HPC job scheduling and resource provisioning schemes to enable HPC system\u27s emergency demand response participation. In the final part, we propose an economic demand-response model to allow both HPC operator and HPC users to jointly reduce HPC system\u27s energy cost. Our proposed model allows the participation of HPC systems in economic demand-response programs through a contract-based rewarding scheme that can incentivize HPC users to participate in demand response

    A cross-stack, network-centric architectural design for next-generation datacenters

    Get PDF
    This thesis proposes a full-stack, cross-layer datacenter architecture based on in-network computing and near-memory processing paradigms. The proposed datacenter architecture is built atop two principles: (1) utilizing commodity, off-the-shelf hardware (i.e., processor, DRAM, and network devices) with minimal changes to their architecture, and (2) providing a standard interface to the programmers for using the novel hardware. More specifically, the proposed datacenter architecture enables a smart network adapter to collectively compress/decompress data exchange between distributed DNN training nodes and assist the operating system in performing aggressive processor power management. It also deploys specialized memory modules in the servers, capable of performing general-purpose computation and network connectivity. This thesis unlocks the potentials of hardware and operating system co-design in architecting application-transparent, near-data processing hardware for improving datacenter's performance, energy efficiency, and scalability. We evaluate the proposed datacenter architecture using a combination of full-system simulation, FPGA prototyping, and real-system experiments

    Communication Architectures for Scalable GPU-centric Computing Systems

    Get PDF
    In recent years, power consumption has become the main concern in High Performance Computing (HPC). This has lead to heterogeneous computing systems in which Central Processing Units (CPUs) are supported by accelerators, such as Graphics Processing Units (GPUs). While GPUs used to be seen as slave devices to which the main processor offloads computation, today’s systems tend to deploy more GPUs than CPUs. Eventually, the GPU will become a first-class processor, bearing increasing responsibilities. Promoting the GPU to a first-class processor comes with many challenges, such as progress guarantees, dynamic memory management, and scheduling. However, one of the main challenges is the GPU’s inability to orchestrate communication, which is currently entirely handled by the CPU. This work addresses that issue and presents solutions to allow GPUs to source and sink network traffic independently. Many important aspects are addressed, ranging from the application level to how networking hardware is accessed. First, important and large scale exascale applications are studied to further understand their communication behavior and applications’ requirements. Several metrics are presented, including time spent for communication, message sizes, and the length of queues that are required to match messages with receive requests. One aspect the analysis revealed is that messages are becoming smaller at scale, which renders the matching of messages and receive requests an important problem to address. The next part analyzes how the GPU can directly access the network with various communication models being presented and benchmarked. It is shown that a flat address space of distributed GPU memories shows superior bandwidth than put/get communication or CPU-controlled message passing, but less communication can be overlapped with computation. Overall, GPU-controlled communication is always superior, both in terms of time-to-solution and energy spending. The final part addresses communication management on GPUs, which is required to provide high-level communication abstractions. Besides other fundamental building blocks, an algorithm for the message matching is presented that yields similar performance as CPUs. However, it is also shown that the messaging protocol can be relaxed to improve performance significantly, leveraging the massive amount of parallelism provided by the GPU’s architecture

    Scalable Applications on Heterogeneous System Architectures: A Systematic Performance Analysis Framework

    Get PDF
    The efficient parallel execution of scientific applications is a key challenge in high-performance computing (HPC). With growing parallelism and heterogeneity of compute resources as well as increasingly complex software, performance analysis has become an indispensable tool in the development and optimization of parallel programs. This thesis presents a framework for systematic performance analysis of scalable, heterogeneous applications. Based on event traces, it automatically detects the critical path and inefficiencies that result in waiting or idle time, e.g. due to load imbalances between parallel execution streams. As a prerequisite for the analysis of heterogeneous programs, this thesis specifies inefficiency patterns for computation offloading. Furthermore, an essential contribution was made to the development of tool interfaces for OpenACC and OpenMP, which enable a portable data acquisition and a subsequent analysis for programs with offload directives. At present, these interfaces are already part of the latest OpenACC and OpenMP API specification. The aforementioned work, existing preliminary work, and established analysis methods are combined into a generic analysis process, which can be applied across programming models. Based on the detection of wait or idle states, which can propagate over several levels of parallelism, the analysis identifies wasted computing resources and their root cause as well as the critical-path share for each program region. Thus, it determines the influence of program regions on the load balancing between execution streams and the program runtime. The analysis results include a summary of the detected inefficiency patterns and a program trace, enhanced with information about wait states, their cause, and the critical path. In addition, a ranking, based on the amount of waiting time a program region caused on the critical path, highlights program regions that are relevant for program optimization. The scalability of the proposed performance analysis and its implementation is demonstrated using High-Performance Linpack (HPL), while the analysis results are validated with synthetic programs. A scientific application that uses MPI, OpenMP, and CUDA simultaneously is investigated in order to show the applicability of the analysis
    • …
    corecore