155 research outputs found

    Nash and Wardrop equilibria in aggregative games with coupling constraints

    Full text link
    We consider the framework of aggregative games, in which the cost function of each agent depends on his own strategy and on the average population strategy. As first contribution, we investigate the relations between the concepts of Nash and Wardrop equilibrium. By exploiting a characterization of the two equilibria as solutions of variational inequalities, we bound their distance with a decreasing function of the population size. As second contribution, we propose two decentralized algorithms that converge to such equilibria and are capable of coping with constraints coupling the strategies of different agents. Finally, we study the applications of charging of electric vehicles and of route choice on a road network.Comment: IEEE Trans. on Automatic Control (Accepted without changes). The first three authors contributed equall

    Probably Approximately Correct Nash Equilibrium Learning

    Full text link
    We consider a multi-agent noncooperative game with agents' objective functions being affected by uncertainty. Following a data driven paradigm, we represent uncertainty by means of scenarios and seek a robust Nash equilibrium solution. We treat the Nash equilibrium computation problem within the realm of probably approximately correct (PAC) learning. Building upon recent developments in scenario-based optimization, we accompany the computed Nash equilibrium with a priori and a posteriori probabilistic robustness certificates, providing confidence that the computed equilibrium remains unaffected (in probabilistic terms) when a new uncertainty realization is encountered. For a wide class of games, we also show that the computation of the so called compression set - a key concept in scenario-based optimization - can be directly obtained as a byproduct of the proposed solution methodology. Finally, we illustrate how to overcome differentiability issues, arising due to the introduction of scenarios, and compute a Nash equilibrium solution in a decentralized manner. We demonstrate the efficacy of the proposed approach on an electric vehicle charging control problem.Comment: Preprint submitted to IEEE Transactions on Automatic Contro

    Decentralized Convergence to Nash Equilibria in Constrained Deterministic Mean Field Control

    Full text link
    This paper considers decentralized control and optimization methodologies for large populations of systems, consisting of several agents with different individual behaviors, constraints and interests, and affected by the aggregate behavior of the overall population. For such large-scale systems, the theory of aggregative and mean field games has been established and successfully applied in various scientific disciplines. While the existing literature addresses the case of unconstrained agents, we formulate deterministic mean field control problems in the presence of heterogeneous convex constraints for the individual agents, for instance arising from agents with linear dynamics subject to convex state and control constraints. We propose several model-free feedback iterations to compute in a decentralized fashion a mean field Nash equilibrium in the limit of infinite population size. We apply our methods to the constrained linear quadratic deterministic mean field control problem and to the constrained mean field charging control problem for large populations of plug-in electric vehicles.Comment: IEEE Trans. on Automatic Control (cond. accepted

    Autonomous Demand Side Management Based on Energy Consumption Scheduling and Instantaneous Load Billing: An Aggregative Game Approach

    Full text link
    In this paper, we investigate a practical demand side management scenario where the selfish consumers compete to minimize their individual energy cost through scheduling their future energy consumption profiles. We propose an instantaneous load billing scheme to effectively convince the consumers to shift their peak-time consumption and to fairly charge the consumers for their energy consumption. For the considered DSM scenario, an aggregative game is first formulated to model the strategic behaviors of the selfish consumers. By resorting to the variational inequality theory, we analyze the conditions for the existence and uniqueness of the Nash equilibrium (NE) of the formulated game. Subsequently, for the scenario where there is a central unit calculating and sending the real-time aggregated load to all consumers, we develop a one timescale distributed iterative proximal-point algorithm with provable convergence to achieve the NE of the formulated game. Finally, considering the alternative situation where the central unit does not exist, but the consumers are connected and they would like to share their estimated information with others, we present a distributed agreement-based algorithm, by which the consumers can achieve the NE of the formulated game through exchanging information with their immediate neighbors.Comment: 11 pages, 7 figure

    Getting noncooperative agents to cooperate:nudging and dynamic interventions

    Get PDF
    Due to the strong interconnection between modern engineering systems and their users, performance of these systems heavily rely on the user behavior. Therefore, uncoordinated user behavior can deteriorate the overall performance and entail undesired outcomes. To address this problem, this thesis studies the problem of designing suitable interventions that provide coordination among noncooperative agents/players. We investigate the development of suitable interventions in several setups and propose mechanisms that achieve a desired outcome. The first part of the thesis focuses on altering the aggregative behavior of noncooperative price-taking agents towards a desired stationary or temporal behavior. We address this problem by introducing a nudge framework, where a system regulator modifies the behavior of the agents by providing a price prediction signal. In the second part of the thesis, we focus on designing intervention mechanisms that steer the actions of noncooperative players in network games to the social optimum. We investigate different cases based on the knowledge of the system regulator on the game as well as constraints on the actions and interventions. The third part of the thesis deals with the problem of Nash equilibrium seeking in aggregative games. We develop a distributed algorithm where the players communicate to their neighboring players. The robustness and privacy preserving properties of the algorithm are also analyzed

    Mean-Field-Type Games in Engineering

    Full text link
    A mean-field-type game is a game in which the instantaneous payoffs and/or the state dynamics functions involve not only the state and the action profile but also the joint distributions of state-action pairs. This article presents some engineering applications of mean-field-type games including road traffic networks, multi-level building evacuation, millimeter wave wireless communications, distributed power networks, virus spread over networks, virtual machine resource management in cloud networks, synchronization of oscillators, energy-efficient buildings, online meeting and mobile crowdsensing.Comment: 84 pages, 24 figures, 183 references. to appear in AIMS 201
    • …
    corecore