1,026 research outputs found

    Local Binary Patterns in Focal-Plane Processing. Analysis and Applications

    Get PDF
    Feature extraction is the part of pattern recognition, where the sensor data is transformed into a more suitable form for the machine to interpret. The purpose of this step is also to reduce the amount of information passed to the next stages of the system, and to preserve the essential information in the view of discriminating the data into different classes. For instance, in the case of image analysis the actual image intensities are vulnerable to various environmental effects, such as lighting changes and the feature extraction can be used as means for detecting features, which are invariant to certain types of illumination changes. Finally, classification tries to make decisions based on the previously transformed data. The main focus of this thesis is on developing new methods for the embedded feature extraction based on local non-parametric image descriptors. Also, feature analysis is carried out for the selected image features. Low-level Local Binary Pattern (LBP) based features are in a main role in the analysis. In the embedded domain, the pattern recognition system must usually meet strict performance constraints, such as high speed, compact size and low power consumption. The characteristics of the final system can be seen as a trade-off between these metrics, which is largely affected by the decisions made during the implementation phase. The implementation alternatives of the LBP based feature extraction are explored in the embedded domain in the context of focal-plane vision processors. In particular, the thesis demonstrates the LBP extraction with MIPA4k massively parallel focal-plane processor IC. Also higher level processing is incorporated to this framework, by means of a framework for implementing a single chip face recognition system. Furthermore, a new method for determining optical flow based on LBPs, designed in particular to the embedded domain is presented. Inspired by some of the principles observed through the feature analysis of the Local Binary Patterns, an extension to the well known non-parametric rank transform is proposed, and its performance is evaluated in face recognition experiments with a standard dataset. Finally, an a priori model where the LBPs are seen as combinations of n-tuples is also presentedSiirretty Doriast

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality

    Taxonomy of datasets in graph learning : a data-driven approach to improve GNN benchmarking

    Full text link
    The core research of this thesis, mostly comprising chapter four, has been accepted to the Learning on Graphs (LoG) 2022 conference for a spotlight presentation as a standalone paper, under the title "Taxonomy of Benchmarks in Graph Representation Learning", and is to be published in the Proceedings of Machine Learning Research (PMLR) series. As a main author of the paper, my specific contributions to this paper cover problem formulation, design and implementation of our taxonomy framework and experimental pipeline, collation of our results and of course the writing of the article.L'apprentissage profond sur les graphes a atteint des niveaux de succès sans précédent ces dernières années grâce aux réseaux de neurones de graphes (GNN), des architectures de réseaux de neurones spécialisées qui ont sans équivoque surpassé les approches antérieurs d'apprentissage définies sur des graphes. Les GNN étendent le succès des réseaux de neurones aux données structurées en graphes en tenant compte de leur géométrie intrinsèque. Bien que des recherches approfondies aient été effectuées sur le développement de GNN avec des performances supérieures à celles des modèles références d'apprentissage de représentation graphique, les procédures d'analyse comparative actuelles sont insuffisantes pour fournir des évaluations justes et efficaces des modèles GNN. Le problème peut-être le plus répandu et en même temps le moins compris en ce qui concerne l'analyse comparative des graphiques est la "couverture de domaine": malgré le nombre croissant d'ensembles de données graphiques disponibles, la plupart d'entre eux ne fournissent pas d'informations supplémentaires et au contraire renforcent les biais potentiellement nuisibles dans le développement d’un modèle GNN. Ce problème provient d'un manque de compréhension en ce qui concerne les aspects d'un modèle donné qui sont sondés par les ensembles de données de graphes. Par exemple, dans quelle mesure testent-ils la capacité d'un modèle à tirer parti de la structure du graphe par rapport aux fonctionnalités des nœuds? Ici, nous développons une approche fondée sur des principes pour taxonomiser les ensembles de données d'analyse comparative selon un "profil de sensibilité" qui est basé sur la quantité de changement de performance du GNN en raison d'une collection de perturbations graphiques. Notre analyse basée sur les données permet de mieux comprendre quelles caractéristiques des données de référence sont exploitées par les GNN. Par conséquent, notre taxonomie peut aider à la sélection et au développement de repères graphiques adéquats et à une évaluation mieux informée des futures méthodes GNN. Enfin, notre approche et notre implémentation dans le package GTaxoGym (https://github.com/G-Taxonomy-Workgroup/GTaxoGym) sont extensibles à plusieurs types de tâches de prédiction de graphes et à des futurs ensembles de données.Deep learning on graphs has attained unprecedented levels of success in recent years thanks to Graph Neural Networks (GNNs), specialized neural network architectures that have unequivocally surpassed prior graph learning approaches. GNNs extend the success of neural networks to graph-structured data by accounting for their intrinsic geometry. While extensive research has been done on developing GNNs with superior performance according to a collection of graph representation learning benchmarks, current benchmarking procedures are insufficient to provide fair and effective evaluations of GNN models. Perhaps the most prevalent and at the same time least understood problem with respect to graph benchmarking is "domain coverage": Despite the growing number of available graph datasets, most of them do not provide additional insights and on the contrary reinforce potentially harmful biases in GNN model development. This problem stems from a lack of understanding with respect to what aspects of a given model are probed by graph datasets. For example, to what extent do they test the ability of a model to leverage graph structure vs. node features? Here, we develop a principled approach to taxonomize benchmarking datasets according to a "sensitivity profile" that is based on how much GNN performance changes due to a collection of graph perturbations. Our data-driven analysis provides a deeper understanding of which benchmarking data characteristics are leveraged by GNNs. Consequently, our taxonomy can aid in selection and development of adequate graph benchmarks, and better informed evaluation of future GNN methods. Finally, our approach and implementation in the GTaxoGym package (https://github.com/G-Taxonomy-Workgroup/GTaxoGym) are extendable to multiple graph prediction task types and future datasets

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    T-Branes at the Limits of Geometry

    Get PDF
    Singular limits of 6D F-theory compactifications are often captured by T-branes, namely a non-abelian configuration of intersecting 7-branes with a nilpotent matrix of normal deformations. The long distance approximation of such 7-branes is a Hitchin-like system in which simple and irregular poles emerge at marked points of the geometry. When multiple matter fields localize at the same point in the geometry, the associated Higgs field can exhibit irregular behavior, namely poles of order greater than one. This provides a geometric mechanism to engineer wild Higgs bundles. Physical constraints such as anomaly cancellation and consistent coupling to gravity also limit the order of such poles. Using this geometric formulation, we unify seemingly different wild Hitchin systems in a single framework in which orders of poles become adjustable parameters dictated by tuning gauge singlet moduli of the F-theory model.Comment: v2: 65 pages, 6 figures, clarifications adde

    Online Analysis of Dynamic Streaming Data

    Get PDF
    Die Arbeit zum Thema "Online Analysis of Dynamic Streaming Data" beschäftigt sich mit der Distanzmessung dynamischer, semistrukturierter Daten in kontinuierlichen Datenströmen um Analysen auf diesen Datenstrukturen bereits zur Laufzeit zu ermöglichen. Hierzu wird eine Formalisierung zur Distanzberechnung für statische und dynamische Bäume eingeführt und durch eine explizite Betrachtung der Dynamik von Attributen einzelner Knoten der Bäume ergänzt. Die Echtzeitanalyse basierend auf der Distanzmessung wird durch ein dichte-basiertes Clustering ergänzt, um eine Anwendung des Clustering, einer Klassifikation, aber auch einer Anomalieerkennung zu demonstrieren. Die Ergebnisse dieser Arbeit basieren auf einer theoretischen Analyse der eingeführten Formalisierung von Distanzmessungen für dynamische Bäume. Diese Analysen werden unterlegt mit empirischen Messungen auf Basis von Monitoring-Daten von Batchjobs aus dem Batchsystem des GridKa Daten- und Rechenzentrums. Die Evaluation der vorgeschlagenen Formalisierung sowie der darauf aufbauenden Echtzeitanalysemethoden zeigen die Effizienz und Skalierbarkeit des Verfahrens. Zudem wird gezeigt, dass die Betrachtung von Attributen und Attribut-Statistiken von besonderer Bedeutung für die Qualität der Ergebnisse von Analysen dynamischer, semistrukturierter Daten ist. Außerdem zeigt die Evaluation, dass die Qualität der Ergebnisse durch eine unabhängige Kombination mehrerer Distanzen weiter verbessert werden kann. Insbesondere wird durch die Ergebnisse dieser Arbeit die Analyse sich über die Zeit verändernder Daten ermöglicht

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    A hybrid algorithm for Bayesian network structure learning with application to multi-label learning

    Get PDF
    We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PC's ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.Comment: arXiv admin note: text overlap with arXiv:1101.5184 by other author
    • …
    corecore