114 research outputs found

    Massive MIMO Systems with Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits

    Full text link
    The use of large-scale antenna arrays can bring substantial improvements in energy and/or spectral efficiency to wireless systems due to the greatly improved spatial resolution and array gain. Recent works in the field of massive multiple-input multiple-output (MIMO) show that the user channels decorrelate when the number of antennas at the base stations (BSs) increases, thus strong signal gains are achievable with little inter-user interference. Since these results rely on asymptotics, it is important to investigate whether the conventional system models are reasonable in this asymptotic regime. This paper considers a new system model that incorporates general transceiver hardware impairments at both the BSs (equipped with large antenna arrays) and the single-antenna user equipments (UEs). As opposed to the conventional case of ideal hardware, we show that hardware impairments create finite ceilings on the channel estimation accuracy and on the downlink/uplink capacity of each UE. Surprisingly, the capacity is mainly limited by the hardware at the UE, while the impact of impairments in the large-scale arrays vanishes asymptotically and inter-user interference (in particular, pilot contamination) becomes negligible. Furthermore, we prove that the huge degrees of freedom offered by massive MIMO can be used to reduce the transmit power and/or to tolerate larger hardware impairments, which allows for the use of inexpensive and energy-efficient antenna elements.Comment: To appear in IEEE Transactions on Information Theory, 28 pages, 15 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/massive-MIMO-hardware-impairment

    Analysis and Mitigation of Channel Non-Reciprocity in TDD MIMO Systems

    Get PDF
    The ever-growing demands for higher number of connected devices as well as higher data rates and more energy efficient wireless communications have necessitated the use of new technical solutions. One of the main enablers in this respect is Multiple-Input Multiple-Output (MIMO) systems in which transmitting and receiving sides are equipped with multiple antennas. Such systems need precise information of the MIMO radio channel available at the transmitter side to reach their full potential. Owing to the reciprocity of uplink and downlink channels in Time Division Duplexing (TDD) systems, Base Stations (BSs) may acquire the required channel state information for downlink transmission by processing the received uplink pilots. However, such reciprocity only applies to the physical propagation channels and does not take into consideration the so-called observable or effective uplink and downlink channels which also include the possible non-reciprocal behavior of the involved transceiver circuits and antenna systems. This thesis focuses on the channel non-reciprocity problem in TDD MIMO systems due to mismatches in Frequency Response (FR) and mutual coupling of transmitting and receiving chains of transceivers and associated antenna systems. The emphasis in the work and developments is placed on multi-user MIMO precoded downlink transmission. In this respect, the harmful impacts of channel non-reciprocity on the performance of such downlink transmission are analyzed. Additionally, non-reciprocity mitigation methods are developed seeking to reclaim TDD reciprocity and thus to avoid the involved performance degradations. Firstly, the focus is on the small-scale MIMO systems where BSs are equipped with relatively limited number of antennas, say in the order of 4 to 8. The provided analysis on Zero-Forcing (ZF) and eigen-based precoding schemes in single-cell scenario shows that both schemes experience considerable performance degradations in the presence of FR and mutual coupling mismatches. Whereas, in general, the system performance is more sensitive to i) non-reciprocity sources in the BS transceiver; and ii) mutual coupling mismatches. Then, assuming reasonably good antenna isolation, an Over-The-Air (OTA) pilot-based algorithm is proposed to efficiently mitigate the BS transceiver non-reciprocity. The numerical results indicate high accuracy in estimating the BS transceiver non- reciprocity parameters as well as considerable improvement in the performance of the system. In multi-cell scenario, both centralized and decentralized precoding approaches are covered while the focus is on the impacts of FR mismatches of UE transceivers. The how that there is severe degradation in the performance of decentralized precoding while centralized precoding is immune to such channel non-reciprocity impacts. Secondly, the so-called massive MIMO systems are considered in which the number of antennas in the BS side is increased with an order of magnitude or more. Based on the detailed developed signal models, closed-form analytical expressions are first provided for effective signal-to-interference-plus-noise ratios of both ZF and maximum ratio transmission precoding schemes. The analysis covers the joint impacts of channel non-reciprocity and imperfect uplink channel estimation and shows that while both precoding schemes suffer from channel non-reciprocity impacts, ZF is more sensitive to such non-idealities. Next, a concept and an algorithm are proposed, involving UE side measurements and processing, to be deployed in the UE side to efficiently estimate the level of BS transceiver non-reciprocity. This enables the UEs to inform the BS about the optimum time to perform channel non-reciprocity mitigation round and thus improves the spectral efficiency. Finally, in order to mitigate channel non-reciprocity in massive MIMO systems, an efficient iterative OTA pilot-based algorithm is proposed which estimates and mitigates transceiver non-reciprocity impacts in both BS and UE sides. Compared to the state-of-the-art methods, the simulation results indicate substantial improvements in system spectral efficiency when the proposed method is being used. Overall, the analyses provided in this thesis can be used as valuable tools to better understand practical TDD MIMO systems which can be very helpful in designing such systems. Furthermore, the channel non-reciprocity mitigation methods proposed in this thesis can be deployed in practical TDD MIMO syst channel reciprocity and thus significantly increase the spectral efficiency

    An Overview of Massive MIMO Technology Components in METIS

    Get PDF
    As the standardization of full-dimension MIMO systems in the Third Generation Partnership Project progresses, the research community has started to explore the potential of very large arrays as an enabler technology for meeting the requirements of fifth generation systems. Indeed, in its final deliverable, the European 5G project METIS identifies massive MIMO as a key 5G enabler and proposes specific technology components that will allow the cost-efficient deployment of cellular systems taking advantage of hundreds of antennas at cellular base stations. These technology components include handling the inherent pilot-data resource allocation trade-off in a near optimal fashion, a novel random access scheme supporting a large number of users, coded channel state information for sparse channels in frequency-division duplexing systems, managing user grouping and multi-user beamforming, and a decentralized coordinated transceiver design. The aggregate effect of these components enables massive MIMO to contribute to the METIS objectives of delivering very high data rates and managing dense populations

    Distributed CSI Acquisition and Coordinated Precoding for TDD Multicell MIMO Systems

    Full text link

    Towards versatile access networks (Chapter 3)

    Get PDF
    Compared to its previous generations, the 5th generation (5G) cellular network features an additional type of densification, i.e., a large number of active antennas per access point (AP) can be deployed. This technique is known as massive multipleinput multiple-output (mMIMO) [1]. Meanwhile, multiple-input multiple-output (MIMO) evolution, e.g., in channel state information (CSI) enhancement, and also on the study of a larger number of orthogonal demodulation reference signal (DMRS) ports for MU-MIMO, was one of the Release 18 of 3rd generation partnership project (3GPP Rel-18) work item. This release (3GPP Rel-18) package approval, in the fourth quarter of 2021, marked the start of the 5G Advanced evolution in 3GPP. The other items in 3GPP Rel-18 are to study and add functionality in the areas of network energy savings, coverage, mobility support, multicast broadcast services, and positionin

    D3.2 First performance results for multi -node/multi -antenna transmission technologies

    Full text link
    This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.Fantini. R.; Santos, A.; De Carvalho, E.; Rajatheva, N.; Popovski, P.; Baracca, P.; Aziz, D.... (2014). D3.2 First performance results for multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675
    corecore