1,663 research outputs found

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    Using EEG and NIRS for brain-computer interface and cognitive performance measures: a pilot study

    Get PDF
    This study addresses two important problem statements, namely, selection of training datasets for online Brain-Computer Interface (BCI) classifier training and determination of participant concentration levels during an experiment. The work also attempted a pilot study to integrate electroencephalograms (EEGs) and Near Infra Red Spectroscopy (NIRS) for possible applications such as the BCI and for measuring cognitive levels. Two experiments are presented, the first being a mathematical task interleaved with rest states using NIRS only. In the next, integration of the EEG-NIRS with reference to P300-based BCI systems as well as the experimental conditions designed to elicit the concentration levels (denoted as ON and OFF states here) during the paradigm, are presented. The first experiment indicates that NIRS can be used to differentiate a concentrated (i.e., mental activity) level from the rest. However, the second experiment reveals statistically significant results using the EEG only. We present details about the equipment used, the participants as well as the signal processing and machine learning techniques implemented to analyse the EEG and NIRS data. After discussing the results, we conclude by describing the research scope as well as the possible pitfalls in this work from a NIRS viewpoint, which presents an opportunity for future research exploration for BCI and cognitive performance measures

    The Use of EEG Signals For Biometric Person Recognition

    Get PDF
    This work is devoted to investigating EEG-based biometric recognition systems. One potential advantage of using EEG signals for person recognition is the difficulty in generating artificial signals with biometric characteristics, thus making the spoofing of EEG-based biometric systems a challenging task. However, more works needs to be done to overcome certain drawbacks that currently prevent the adoption of EEG biometrics in real-life scenarios: 1) usually large number of employed sensors, 2) still relatively low recognition rates (compared with some other biometric modalities), 3) the template ageing effect. The existing shortcomings of EEG biometrics and their possible solutions are addressed from three main perspectives in the thesis: pre-processing, feature extraction and pattern classification. In pre-processing, task (stimuli) sensitivity and noise removal are investigated and discussed in separated chapters. For feature extraction, four novel features are proposed; for pattern classification, a new quality filtering method, and a novel instance-based learning algorithm are described in respective chapters. A self-collected database (Mobile Sensor Database) is employed to investigate some important biometric specified effects (e.g. the template ageing effect; using low-cost sensor for recognition). In the research for pre-processing, a training data accumulation scheme is developed, which improves the recognition performance by combining the data of different mental tasks for training; a new wavelet-based de-noising method is developed, its effectiveness in person identification is found to be considerable. Two novel features based on Empirical Mode Decomposition and Hilbert Transform are developed, which provided the best biometric performance amongst all the newly proposed features and other state-of-the-art features reported in the thesis; the other two newly developed wavelet-based features, while having slightly lower recognition accuracies, were computationally more efficient. The quality filtering algorithm is designed to employ the most informative EEG signal segments: experimental results indicate using a small subset of the available data for feature training could receive reasonable improvement in identification rate. The proposed instance-based template reconstruction learning algorithm has shown significant effectiveness when tested using both the publicly available and self-collected databases

    Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising

    Full text link
    [EN] The purpose of the present study is to investigate whether the effectiveness of a new ad on digital channels (YouTube) can be predicted by using neural networks and neuroscience-based metrics (brain response, heart rate variability and eye tracking). Neurophysiological records from 35 participants were exposed to 8 relevant TV Super Bowl commercials. Correlations between neurophysiological-based metrics, ad recall, ad liking, the ACE metrix score and the number of views on YouTube during a year were investigated. Our findings suggest a significant correlation between neuroscience metrics and self-reported of ad effectiveness and the direct number of views on the YouTube channel. In addition, and using an artificial neural network based on neuroscience metrics, the model classifies (82.9% of average accuracy) and estimate the number of online views (mean error of 0.199). The results highlight the validity of neuromarketing-based techniques for predicting the success of advertising responses. Practitioners can consider the proposed methodology at the design stages of advertising content, thus enhancing advertising effectiveness. The study pioneers the use of neurophysiological methods in predicting advertising success in a digital context. This is the first article that has examined whether these measures could actually be used for predicting views for advertising on YouTube.This work has been supported by the Heineken Endowed Chair in Neuromarketing at the Polytechnic University of Valencia in order to research and apply new technologies and neuroscience in communication, distribution and consumption fields.Guixeres Provinciale, J.; Bigné-Alcañiz, E.; Ausin-Azofra, JM.; Alcañiz Raya, ML.; Colomer, A.; Fuentes-Hurtado, FJ.; Naranjo Ornedo, V. (2017). Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising. Frontiers in Psychology. 8:1-14. https://doi.org/10.3389/fpsyg.2017.01808S1148Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031-1051. doi:10.1007/s11517-006-0119-0Aftanas, L. I., Reva, N. V., Varlamov, A. A., Pavlov, S. V., & Makhnev, V. P. (2004). Analysis of Evoked EEG Synchronization and Desynchronization in Conditions of Emotional Activation in Humans: Temporal and Topographic Characteristics. Neuroscience and Behavioral Physiology, 34(8), 859-867. doi:10.1023/b:neab.0000038139.39812.ebAstolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., … Babiloni, F. (2008). Neural Basis for Brain Responses to TV Commercials: A High-Resolution EEG Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 522-531. doi:10.1109/tnsre.2008.2009784Astolfi, L., Fallani, F. D. V., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., … Babiloni, F. (2009). Brain activity during the memorization of visual scenes from TV commercials: An application of high resolution EEG and steady state somatosensory evoked potentials technologies. Journal of Physiology-Paris, 103(6), 333-341. doi:10.1016/j.jphysparis.2009.07.002Baack, D. W., Wilson, R. T., & Till, B. D. (2008). Creativity and Memory Effects: Recall, Recognition, and an Exploration of Nontraditional Media. Journal of Advertising, 37(4), 85-94. doi:10.2753/joa0091-3367370407Bellman, S., Murphy, J., Treleaven-Hassard, S., O’Farrell, J., Qiu, L., & Varan, D. (2013). Using Internet Behavior to Deliver Relevant Television Commercials. Journal of Interactive Marketing, 27(2), 130-140. doi:10.1016/j.intmar.2012.12.001Bigné, E. (2016). Frontiers in research in business: Will you be in? European Journal of Management and Business Economics, 25(3), 89-90. doi:10.1016/j.redeen.2016.09.001Bigné, E., Llinares, C., & Torrecilla, C. (2016). Elapsed time on first buying triggers brand choices within a category: A virtual reality-based study. Journal of Business Research, 69(4), 1423-1427. doi:10.1016/j.jbusres.2015.10.119Blanco-Velasco, M., Weng, B., & Barner, K. E. (2008). ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Computers in Biology and Medicine, 38(1), 1-13. doi:10.1016/j.compbiomed.2007.06.003Boksem, M. A. S., & Smidts, A. (2015). Brain Responses to Movie Trailers Predict Individual Preferences for Movies and Their Population-Wide Commercial Success. Journal of Marketing Research, 52(4), 482-492. doi:10.1509/jmr.13.0572Bradley, M. M., Houbova, P., Miccoli, L., Costa, V. D., & Lang, P. J. (2011). Scan patterns when viewing natural scenes: Emotion, complexity, and repetition. Psychophysiology, 48(11), 1544-1553. doi:10.1111/j.1469-8986.2011.01223.xCastiglioni, P., & Di Rienzo, M. (s. f.). On the evaluation of heart rate spectra: the Lomb periodogram. Computers in Cardiology 1996. doi:10.1109/cic.1996.542584Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., & Moon, S. (2007). I tube, you tube, everybody tubes. Proceedings of the 7th ACM SIGCOMM conference on Internet measurement - IMC ’07. doi:10.1145/1298306.1298309Chen, L., Zhou, Y., & Chiu, D. M. (2014). A lifetime model of online video popularity. 2014 23rd International Conference on Computer Communication and Networks (ICCCN). doi:10.1109/icccn.2014.6911774Christoforou, C., Christou-Champi, S., Constantinidou, F., & Theodorou, M. (2015). From the eyes and the heart: a novel eye-gaze metric that predicts video preferences of a large audience. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00579Colomer Granero, A., Fuentes-Hurtado, F., Naranjo Ornedo, V., Guixeres Provinciale, J., Ausín, J. M., & Alcañiz Raya, M. (2016). A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in Computational Neuroscience, 10. doi:10.3389/fncom.2016.00074Couwenberg, L. E., Boksem, M. A. S., Dietvorst, R. C., Worm, L., Verbeke, W. J. M. I., & Smidts, A. (2017). Neural responses to functional and experiential ad appeals: Explaining ad effectiveness. International Journal of Research in Marketing, 34(2), 355-366. doi:10.1016/j.ijresmar.2016.10.005Curry, B., & Moutinho, L. (1993). Neural Networks in Marketing: Modelling Consumer Responses to Advertising Stimuli. European Journal of Marketing, 27(7), 5-20. doi:10.1108/03090569310040325Daugherty, T., Hoffman, E., & Kennedy, K. (2016). Research in reverse: Ad testing using an inductive consumer neuroscience approach. Journal of Business Research, 69(8), 3168-3176. doi:10.1016/j.jbusres.2015.12.005Davidson, R. J. (2004). What does the prefrontal cortex «do» in affect: perspectives on frontal EEG asymmetry research. Biological Psychology, 67(1-2), 219-234. doi:10.1016/j.biopsycho.2004.03.008Deitz, G. D., Royne, M. B., Peasley, M. C., & Huang, J. «Coco». (2016). EEG-Based Measures versus Panel Ratings: Predicting Social-Media Based Behavioral Responses to Super Bowl Ads. Journal of Advertising Research, 56(2), 217. doi:10.2501/jar-2016-030Demarzo, M. M. P., Montero-Marin, J., Stein, P. K., Cebolla, A. s, Provinciale, J. G., & García-Campayo, J. (2014). Mindfulness may both moderate and mediate the effect of physical fitness on cardiovascular responses to stress: a speculative hypothesis. Frontiers in Physiology, 5. doi:10.3389/fphys.2014.00105Santos, R. D. O. J. dos, Oliveira, J. H. C. de, Rocha, J. B., & Giraldi, J. D. M. E. (2015). Eye Tracking in Neuromarketing: A Research Agenda for Marketing Studies. International Journal of Psychological Studies, 7(1). doi:10.5539/ijps.v7n1p32Elsen, M., Pieters, R., & Wedel, M. (2016). Thin Slice Impressions: How Advertising Evaluation Depends on Exposure Duration. Journal of Marketing Research, 53(4), 563-579. doi:10.1509/jmr.13.0398Feise, R. J. (2002). Do multiple outcome measures require p-value adjustment? BMC Medical Research Methodology, 2(1). doi:10.1186/1471-2288-2-8Fishman, M., Jacono, F. J., Park, S., Jamasebi, R., Thungtong, A., Loparo, K. A., & Dick, T. E. (2012). A method for analyzing temporal patterns of variability of a time series from Poincaré plots. Journal of Applied Physiology, 113(2), 297-306. doi:10.1152/japplphysiol.01377.2010Fjorback, L. O., Arendt, M., Ørnbøl, E., Fink, P., & Walach, H. (2011). Mindfulness-Based Stress Reduction and Mindfulness-Based Cognitive Therapy - a systematic review of randomized controlled trials. Acta Psychiatrica Scandinavica, 124(2), 102-119. doi:10.1111/j.1600-0447.2011.01704.xGao, J. F., Yang, Y., Lin, P., Wang, P., & Zheng, C. X. (2009). Automatic Removal of Eye-Movement and Blink Artifacts from EEG Signals. Brain Topography, 23(1), 105-114. doi:10.1007/s10548-009-0131-4Geisler, F. C. M., Vennewald, N., Kubiak, T., & Weber, H. (2010). The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Personality and Individual Differences, 49(7), 723-728. doi:10.1016/j.paid.2010.06.015Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N., & Wichansky, A. M. (2002). Eye tracking in web search tasks. Proceedings of the symposium on Eye tracking research & applications - ETRA ’02. doi:10.1145/507072.507082Grandjean, D., Sander, D., & Scherer, K. R. (2008). Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Consciousness and Cognition, 17(2), 484-495. doi:10.1016/j.concog.2008.03.019Guerreiro, J., Rita, P., & Trigueiros, D. (2015). Attention, emotions and cause-related marketing effectiveness. European Journal of Marketing, 49(11/12), 1728-1750. doi:10.1108/ejm-09-2014-0543Ha, L. (2008). Online Advertising Research in Advertising Journals: A Review. Journal of Current Issues & Research in Advertising, 30(1), 31-48. doi:10.1080/10641734.2008.10505236Harmon-Jones, E., Gable, P. A., & Peterson, C. K. (2010). The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biological Psychology, 84(3), 451-462. doi:10.1016/j.biopsycho.2009.08.010Holmqvist, K., Andrà, C., Lindström, P., Arzarello, F., Ferrara, F., Robutti, O., & Sabena, C. (2011). A method for quantifying focused versus overview behavior in AOI sequences. Behavior Research Methods, 43(4), 987-998. doi:10.3758/s13428-011-0104-xKent, R. J., & Allen, C. T. (1994). Competitive Interference Effects in Consumer Memory for Advertising: The Role of Brand Familiarity. Journal of Marketing, 58(3), 97. doi:10.2307/1252313Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. (2013). Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems with Applications, 40(9), 3803-3812. doi:10.1016/j.eswa.2012.12.095Kim, K., Hayes, J. L., Avant, J. A., & Reid, L. N. (2014). Trends in Advertising Research: A Longitudinal Analysis of Leading Advertising, Marketing, and Communication Journals, 1980 to 2010. Journal of Advertising, 43(3), 296-316. doi:10.1080/00913367.2013.857620Kopton, I. M., & Kenning, P. (2014). Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00549Kühn, S., Strelow, E., & Gallinat, J. (2016). Multiple «buy buttons» in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI. NeuroImage, 136, 122-128. doi:10.1016/j.neuroimage.2016.05.021Lang, A., Bolls, P., Potter, R. F., & Kawahara, K. (1999). The effects of production pacing and arousing content on the information processing of television messages. Journal of Broadcasting & Electronic Media, 43(4), 451-475. doi:10.1080/08838159909364504Lee, J., & Ahn, J.-H. (2012). Attention to Banner Ads and Their Effectiveness: An Eye-Tracking Approach. International Journal of Electronic Commerce, 17(1), 119-137. doi:10.2753/jec1086-4415170105McAlister, L., Srinivasan, R., Jindal, N., & Cannella, A. A. (2016). Advertising Effectiveness: The Moderating Effect of Firm Strategy. Journal of Marketing Research, 53(2), 207-224. doi:10.1509/jmr.13.0285McDuff, D., Kaliouby, R. E., Cohn, J. F., & Picard, R. W. (2015). Predicting Ad Liking and Purchase Intent: Large-Scale Analysis of Facial Responses to Ads. IEEE Transactions on Affective Computing, 6(3), 223-235. doi:10.1109/taffc.2014.2384198Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229-240. doi:10.1111/j.1469-8986.2010.01061.xBabiloni, F. (2012). Consumer Nueroscience: A New Area of Study for Biomedical Engineers. IEEE Pulse, 3(3), 21-23. doi:10.1109/mpul.2012.2189166Mould, D., Mandryk, R. L., & Li, H. (2012). Emotional response and visual attention to non-photorealistic images. Computers & Graphics, 36(6), 658-672. doi:10.1016/j.cag.2012.03.039Cartocci, G., Caratù, M., Modica, E., Maglione, A. G., Rossi, D., Cherubino, P., & Babiloni, F. (2017). Electroencephalographic, Heart Rate, and Galvanic Skin Response Assessment for an Advertising Perception Study: Application to Antismoking Public Service Announcements. Journal of Visualized Experiments, (126). doi:10.3791/55872Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230-236. doi:10.1109/tbme.1985.325532Pieters, R., Warlop, L., & Wedel, M. (2002). Breaking Through the Clutter: Benefits of Advertisement Originality and Familiarity for Brand Attention and Memory. Management Science, 48(6), 765-781. doi:10.1287/mnsc.48.6.765.192Piskorski, J., & Guzik, P. (2007). Geometry of the Poincaré plot ofRRintervals and its asymmetry in healthy adults. Physiological Measurement, 28(3), 287-300. doi:10.1088/0967-3334/28/3/005Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039Ruanguttamanun, C. (2014). Neuromarketing: I Put Myself into a fMRI Scanner and Realized that I love Louis Vuitton Ads. Procedia - Social and Behavioral Sciences, 148, 211-218. doi:10.1016/j.sbspro.2014.07.036Shehu, E., Bijmolt, T. H. A., & Clement, M. (2016). Effects of Likeability Dynamics on Consumers’ Intention to Share Online Video Advertisements. Journal of Interactive Marketing, 35, 27-43. doi:10.1016/j.intmar.2016.01.001Smith, A. N., Fischer, E., & Yongjian, C. (2012). How Does Brand-related User-generated Content Differ across YouTube, Facebook, and Twitter? Journal of Interactive Marketing, 26(2), 102-113. doi:10.1016/j.intmar.2012.01.002Strach, P., Zuber, K., Fowler, E. F., Ridout, T. N., & Searles, K. (2015). In a Different Voice? Explaining the Use of Men and Women as Voice-Over Announcers in Political Advertising. Political Communication, 32(2), 183-205. doi:10.1080/10584609.2014.914614Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381. doi:10.1093/oxfordjournals.eurheartj.a014868Tomkovick, C., Yelkur, R., & Christians, L. (2001). The USA’s biggest marketing event keeps getting bigger: an in-depth look at Super Bowl advertising in the 1990s. Journal of Marketing Communications, 7(2), 89-108. doi:10.1080/13527260121725Vakratsas, D., & Ambler, T. (1999). How Advertising Works: What Do We Really Know? Journal of Marketing, 63(1), 26. doi:10.2307/1251999Valenza, G., Allegrini, P., Lanatà, A., & Scilingo, E. P. (2012). Dominant Lyapunov exponent and approximate entropy in heart rate variability during emotional visual elicitation. Frontiers in Neuroengineering, 5. doi:10.3389/fneng.2012.00003Valenza, G., Citi, L., Lanatá, A., Scilingo, E. P., & Barbieri, R. (2014). Revealing Real-Time Emotional Responses: a Personalized Assessment based on Heartbeat Dynamics. Scientific Reports, 4(1). doi:10.1038/srep04998Varan, D., Lang, A., Barwise, P., Weber, R., & Bellman, S. (2015). How Reliable Are Neuromarketers’ Measures of Advertising Effectiveness? Journal of Advertising Research, 55(2), 176-191. doi:10.2501/jar-55-2-176-191Vecchiato, G., Astolfi, L., Tabarrini, A., Salinari, S., Mattia, D., Cincotti, F., … Babiloni, F. (2010). EEG Analysis of the Brain Activity during the Observation of Commercial, Political, or Public Service Announcements. Computational Intelligence and Neuroscience, 2010, 1-7. doi:10.1155/2010/985867Vecchiato, G., Maglione, A. G., Cherubino, P., Wasikowska, B., Wawrzyniak, A., Latuszynska, A., … Babiloni, F. (2014). Neurophysiological Tools to Investigate Consumer’s Gender Differences during the Observation of TV Commercials. Computational and Mathematical Methods in Medicine, 2014, 1-12. doi:10.1155/2014/912981Vecchiato, G., Susac, A., Margeti, S., De Vico Fallani, F., Maglione, A. G., Supek, S., … Babiloni, F. (2012). High-Resolution EEG Analysis of Power Spectral Density Maps and Coherence Networks in a Proportional Reasoning Task. Brain Topography, 26(2), 303-314. doi:10.1007/s10548-012-0259-5Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., … Babiloni, F. (2011). Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements. Medical & Biological Engineering & Computing, 49(5), 579-583. doi:10.1007/s11517-011-0747-xVenkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., … Winer, R. S. (2015). Predicting Advertising success beyond Traditional Measures: New Insights from Neurophysiological Methods and Market Response Modeling. Journal of Marketing Research, 52(4), 436-452. doi:10.1509/jmr.13.0593Wackermann, J., Lehmann, D., Michel, C. M., & Strik, W. K. (1993). Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. International Journal of Psychophysiology, 14(3), 269-283. doi:10.1016/0167-8760(93)90041-mWedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97-121. doi:10.1509/jm.15.0413Werkle-Bergner, M., Müller, V., Li, S.-C., & Lindenberger, U. (2006). Cortical EEG correlates of successful memory encoding: Implications for lifespan comparisons. Neuroscience & Biobehavioral Reviews, 30(6), 839-854. doi:10.1016/j.neubiorev.2006.06.009West, P. M., Brockett, P. L., & Golden, L. L. (1997). A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice. Marketing Science, 16(4), 370-391. doi:10.1287/mksc.16.4.370Zhou, R., Khemmarat, S., Gao, L., Wan, J., & Zhang, J. (2016). How YouTube videos are discovered and its impact on video views. Multimedia Tools and Applications, 75(10), 6035-6058. doi:10.1007/s11042-015-3206-

    Smart Brain Interaction Systems for Office Access and Control in Smart City Context

    Get PDF
    Over the past decade, the term “smart cities” has been worldwide priority for city planning by governments. Planning smart cities implies identifying key drivers for transforming into more convenient, comfortable, and safer life. This requires equipping the cities with appropriate smart technologies and infrastructure. Smart infrastructure is a key component in planning smart cities: smart places, transportation, health and education systems. Smart offices present the concept of workplaces that respond to user’s needs and allow less commitment to routine tasks. Smart offices solutions enable employees to change status of the surrounding environment upon the change of user’s preferences using the changes in the user’s biometrics measures. Meanwhile, smart office access and control through brain signals is quite recent concept. Hence, smart offices provide access and services availability at each moment using smart personal identification (PI) interfaces that responds only to the personal thoughts/preferences issued by the office employee not any other person. Hence, authentication and control systems could benefit from the biometrics. Yet these systems are facing efficiency and accessibility challenges in terms of unimodality. This chapter addresses those problems and proposes a prototype for multimodal biometric person identification control system for smart office access and control as a solution

    Low-cost methodologies and devices applied to measure, model and self-regulate emotions for Human-Computer Interaction

    Get PDF
    En aquesta tesi s'exploren les diferents metodologies d'anàlisi de l'experiència UX des d'una visió centrada en usuari. Aquestes metodologies clàssiques i fonamentades només permeten extreure dades cognitives, és a dir les dades que l'usuari és capaç de comunicar de manera conscient. L'objectiu de la tesi és proposar un model basat en l'extracció de dades biomètriques per complementar amb dades emotives (i formals) la informació cognitiva abans esmentada. Aquesta tesi no és només teòrica, ja que juntament amb el model proposat (i la seva evolució) es mostren les diferents proves, validacions i investigacions en què s'han aplicat, sovint en conjunt amb grups de recerca d'altres àrees amb èxit.En esta tesis se exploran las diferentes metodologías de análisis de la experiencia UX desde una visión centrada en usuario. Estas metodologías clásicas y fundamentadas solamente permiten extraer datos cognitivos, es decir los datos que el usuario es capaz de comunicar de manera consciente. El objetivo de la tesis es proponer un modelo basado en la extracción de datos biométricos para complementar con datos emotivos (y formales) la información cognitiva antes mencionada. Esta tesis no es solamente teórica, ya que junto con el modelo propuesto (y su evolución) se muestran las diferentes pruebas, validaciones e investigaciones en la que se han aplicado, a menudo en conjunto con grupos de investigación de otras áreas con éxito.In this thesis, the different methodologies for analyzing the UX experience are explored from a user-centered perspective. These classical and well-founded methodologies only allow the extraction of cognitive data, that is, the data that the user is capable of consciously communicating. The objective of this thesis is to propose a methodology that uses the extraction of biometric data to complement the aforementioned cognitive information with emotional (and formal) data. This thesis is not only theoretical, since the proposed model (and its evolution) is complemented with the different tests, validations and investigations in which they have been applied, often in conjunction with research groups from other areas with success

    Neural Network Classification of Brainwave Alpha Signals in Cognitive Activities

    Get PDF
    The signal produced by human brain waves is one unique feature. Signals carry information and are represented in electrical signals generated from the brain in a typical waveform. Human brain wave activity will always be active even when sleeping. Brain waves will produce different characteristics in different individuals. Physical and behavioral characteristics can be identified from patterns of brain wave activity. This study aims to distinguish signals from each individual based on the characteristics of alpha signals from brain waves produced. Brain wave signals are generated by giving several mental perception tasks measured using an Electroencephalogram (EEG). To get different features, EEG signals are extracted using first-order extraction and are classified using the Neural Network method. The results of this study are typical of the five first-order features used, namely average, standard deviation, skewness, kurtosis, and entropy. The results of pattern recognition training show that 171 successful iterations are carried out with a period of execution of 6 seconds. Performance tests are performed using the Mean Squared Error (MSE) function. The results of the performance tests that were successfully obtained in the pattern test are in the number 0.000994
    corecore