574 research outputs found

    Applying AI Techniques to Program Optimization for Parallel Computers

    Get PDF

    DESIGN OF EFFICIENT PACKET MARKING-BASED CONGESTION MANAGEMENT TECHNIQUES FOR CLUSTER INTERCONNECTS

    Full text link
    El crecimiento de los computadores paralelos basados en redes de altas prestaciones ha aumentado el interés y esfuerzo de la comunidad investigadora en desarrollar nuevas técnicas que permitan obtener el mejor rendimiento de estas redes. En particular, el desarrollo de nuevas técnicas que permitan un encaminamiento eficiente y que reduzcan la latencia de los paquetes, aumentando así la productividad de la red. Sin embargo, una alta tasa de utilización de la red podría conllevar el que se conoce como "congestión de red", el cual puede causar una degradación del rendimiento. El control de la congestión en redes multietapa es un problema importante que no está completamente resuelto. Con el fin de evitar la degradación del rendimiento de la red cuando aparece congestión, se han propuesto diferentes mecanismos para el control de la congestión. Muchos de estos mecanismos están basados en notificación explícita de la congestión. Para este propósito, los switches detectan congestión y dependiendo de la estrategia aplicada, los paquetes son marcados con la finalidad de advertir a los nodos origenes. Como respuesta, los nodos origenes aplican acciones correctivas para ajustar su tasa de inyección de paquetes. El propósito de esta tesis es analizar las diferentes estratégias de detección y corrección de la congestión en redes multietapa, y proponer nuevos mecanismos de control de la congestión encaminados a este tipo de redes sin descarte de paquetes. Las nuevas propuestas están basadas en una estrategia más refinada de marcaje de paquetes en combinación con un conjunto de acciones correctivas justas que harán al mecanismo capaz de controlar la congestión de manera efectiva con independencia del grado de congestión y de las condiciones de tráfico.Ferrer Pérez, JL. (2012). DESIGN OF EFFICIENT PACKET MARKING-BASED CONGESTION MANAGEMENT TECHNIQUES FOR CLUSTER INTERCONNECTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18197Palanci

    A Techniques for Scalable and Effective Routability Evaluation

    Get PDF
    Routing congestion has become a critical layout challenge in nanoscale circuits since it is a critical factor in determining the routability of a design. An unroutable design is not useful even though it closes on all other design metrics. Fast design closure can only be achieved by accurately evaluating whether a design is routable or not early in the design cycle. Lately, it has become common to use a “light mode ” version of a global router to quickly evaluate the routability of a given placement. This approach suffers from three weaknesses: (i) it does not adequately model local routing resources, which can cause incorrect routability predictions that are only detected late, during detailed routing, (ii) the congestion maps obtained by it tend to have isolated hot spots surrounded by noncongested spots, called “noisy hot spots”, which further affects the accuracy in routability evaluation, (iii) the metrics used to represent congestion may yield numbers that do not provide sufficient intuition to the designer; moreover, they may often fail to predict the routability accurately. This paper presents solutions to these issues. First, we propose three approaches to model local routing resources. Second, we propose a smoothing technique to reduce the number of noisy hot spots and obtain a more accurate routability evaluation result. Finally, we develop a new metric which represents congestion maps with higher fidelity. We apply the proposed techniques to several industrial circuits and demonstrate that one can better predict and evaluate design routability, and congestion mitigation tools can perform muc

    LINK ADAPTATION IN WIRELESS NETWORKS: A CROSS-LAYER APPROACH

    Get PDF
    Conventional Link Adaptation Techniques in wireless networks aim to overcome harsh link conditions caused by physical environmental properties, by adaptively regulating modulation, coding and other signal and protocol specific parameters. These techniques are essential for the overall performance of the networks, especially for environments where the ambient noise level is high or the noise level changes rapidly. Link adaptation techniques answer the questions of What to change? and When to change? in order to improve the present layer performance. Once these decisions are made, other layers are expected to function perfectly with the new communication channel conditions. In our work, we have shown that this assumption does not always hold; and provide two mechanisms that lessen the negative outcomes caused by these decisions. Our first solution, MORAL, is a MAC layer link adaptation technique which utilizes the physical transmission information in order to create differentiation between wireless users with different communication capabilities. MORAL passively collects information from its neighbors and re-aligns the MAC layer parameters according to the observed conditions. MORAL improves the fairness and total throughput of the system through distributing the mutually shared network assets to the wireless users in a fairer manner, according to their capabilities. Our second solution, Data Rate and Fragmentation Aware Ad-hoc Routing protocol, is a network layer link adaptation technique which utilizes the physical transmission information in order to differentiate the wireless links according to their communication capabilities. The proposed mechanism takes the physical transmission parameters into account during the path creation process and produces energy-efficient network paths. The research demonstrated in this dissertation contributes to our understanding of link adaptation techniques and broadens the scope of such techniques beyond simple, one-step physical parameter adjustments. We have designed and implemented two cross-layer mechanisms that utilize the physical layer information to better adapt to the varying channel conditions caused by physical link adaptation mechanisms. These mechanisms has shown that even though the Link Adaptation concept starts at the physical layer, its effects are by no means restricted to this layer; and the wireless networks can benefit considerably by expanding the scope of this concept throughout the entire network stack

    Distributed Time-Predictable Memory Interconnect for Multi-Core Architectures

    Get PDF
    Multi-core architectures are increasingly adopted in emerging real-time applications where execution time is required to be bounded in the worst case (i.e., time predictability) and low. Memory access latency is the main part forming the overall execution time. A promising approach towards time predictability is to employ distributed memory interconnects, either locally arbitrated interconnects or globally arbitrated interconnects, with arbitration schemes, and the pipelined tree-based structure can break the critical path of multiplexing into short steps with small logic size. It scales to a large number of processors that high clock frequency can be synthesised. This research explores timing behaviour of multi-core architectures with shared distributed memory interconnects and improves distributed time-predictable memory interconnects for multi-core architectures. The contributions are mainly threefold. First, the generic analytical flow is proposed for time-predictable behaviour of memory accesses across multi-core architectures with locally arbitrated interconnects. It guarantees time predictability and safely bound the worst case without exact memory access profiles. Second, the root queue modification with the root queue management is proposed for multi-core architectures with locally arbitrated interconnects that variation of memory access latency is reduced and timing behaviour analysis is facilitated. Third, Meshed Bluetree is proposed as the distributed time-predictable multi-memory interconnect, enabling multiple processors to simultaneously access multiple memory modules

    Processor mechanisms for software shared memory

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 169-171).by Nicholas Parks Carter.Ph.D

    Boris Yeltsin\u27s Foreign Policy Legacy

    Get PDF

    Considering Environmental Justice in the Decision to Unbundle Renewable Energy Certificates

    Get PDF
    This comment discusses the current debate over whether or not to unbundle Renewable Energy Certificates (RECs) and concludes that no regulatory or legislative decision can be made without careful consideration of the potential adverse environmental impacts of unbundling upon disadvantaged communities. Part I explains the concept of Distributed Generation, its history and its importance for the electrical utility industry, paying particular attention to renewable Distributed Generation. Next, it describes the role of the CPUC in the argument regarding REC bundling. This part also examines legislative efforts undertaken to deal with the evolving relationship between renewable energy generators, Distributed Generators and the Investor Owned Utilities (hereinafter IOU ). Part I concludes with an exploration of the interplay between regulatory and market approaches to solving various problems in California\u27s recent power industry history. Part II analyzes the pros and the cons of bundled RECs as they relate to REC trading, ratepayers and owners of residential photovoltaic systems. Part III first analyzes environmental justice issues in the context of unbundling RECs, and then proposes that the California Legislature pass the newly introduced Senate Bill 107
    corecore