541 research outputs found

    Opportunistic Routing in Multihop Wireless Networks: Capacity, Energy Efficiency, and Security

    Get PDF
    Opportunistic routing (OR) takes advantages of the spatial diversity and broadcast nature of wireless networks to combat the time-varying links by involving multiple neighboring nodes (forwarding candidates) for each packet relay. This dissertation studies the properties, energy efficiency, capacity, throughput, protocol design and security issues about OR in multihop wireless networks. Firstly, we study geographic opportunistic routing (GOR), a variant of OR which makes use of nodes\u27 location information. We identify and prove three important properties of GOR. The first one is on prioritizing the forwarding candidates according to their geographic advancements to the destination. The second one is on choosing the forwarding candidates based on their advancements and link qualities in order to maximize the expected packet advancement (EPA) with different number of forwarding candidates. The third one is on the concavity of the maximum EPA in respect to the number of forwarding candidates. We further propose a local metric, EPA per unit energy consumption, to tradeoff the routing performance and energy efficiency for GOR. Leveraging the proved properties of GOR, we propose two efficient algorithms to select and prioritize forwarding candidates to maximize the local metric. Secondly, capacity is a fundamental issue in multihop wireless networks. We propose a framework to compute the end-to-end throughput bound or capacity of OR in single/multirate systems given OR strategies (candidate selection and prioritization). Taking into account wireless interference and unique properties of OR, we propose a new method of constructing transmission conflict graphs, and we introduce the concept of concurrent transmission sets to allow the proper formulation of the maximum end-to-end throughput problem as a maximum-flow linear programming problem subject to the transmission conflict constraints. We also propose two OR metrics: expected medium time (EMT) and expected advancement rate (EAR), and the corresponding distributed and local rate and candidate set selection schemes, the Least Medium Time OR (LMTOR) and the Multirate Geographic OR (MGOR). We further extend our framework to compute the capacity of OR in multi-radio multi-channel systems with dynamic OR strategies. We study the necessary and sufficient conditions for the schedulability of a traffic demand vector associated with a transmitter to its forwarding candidates in a concurrent transmission set. We further propose an LP approach and a heuristic algorithm to obtain an opportunistic forwarding strategy scheduling that satisfies a traffic demand vector. Our methodology can be used to calculate the end-to-end throughput bound of OR in multi-radio/channel/rate multihop wireless networks, as well as to study the OR behaviors (such as candidate selection and prioritization) under different network configurations. Thirdly, protocol design of OR in a contention-based medium access environment is an important and challenging issue. In order to avoid duplication, we should ensure only the best receiver of each packet to forward it in an efficient way. We investigate the existing candidate coordination schemes and propose a fast slotted acknowledgment (FSA) to further improve the performance of OR by using a single ACK to coordinate the forwarding candidates with the help of the channel sensing technique. Furthermore, we study the throughput of GOR in multi-rate and single-rate systems. We introduce a framework to analyze the one-hop throughput of GOR, and provide a deeper insight on the trade-off between the benefit (packet advancement, bandwidth, and transmission reliability) and cost (medium time delay) associated with the node collaboration. We propose a local metric named expected one-hop throughput (EOT) to balance the benefit and cost. Finally, packet reception ratio (PRR) has been widely used as an indicator of the link quality in multihop wireless networks. Many routing protocols including OR in wireless networks depend on the PRR information to make routing decision. Providing accurate link quality measurement (LQM) is essential to ensure the right operation of these routing protocols. However, the existing LQM mechanisms are subject to malicious attacks, thus can not guarantee to provide correct link quality information. We analyze the security vulnerabilities in the existing link quality measurement (LQM) mechanisms and propose an efficient broadcast-based secure LQM (SLQM) mechanism, which prevents the malicious attackers from reporting a higher PRR than the actual one. We analyze the security strength and the cost of the proposed mechanism

    Radio Resource Management for Ultra-Reliable Low-Latency Communications in 5G

    Get PDF

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    Cooperation in wireless communication networks

    Full text link

    Adaptive relay techniques for OFDM-based cooperative communication systems

    Get PDF
    Cooperative communication has been considered as a cost-effective manner to exploit the spatial diversity, improve the quality-of-service and extend transmission coverage. However, there are many challenges faced by cooperative systems which use relays to forward signals to the destination, such as the accumulation of multipath channels, complex resource allocation with the bidirectional asymmetric traffic and reduction of transmission efficiency caused by additional relay overhead. In this thesis, we aim to address the above challenges of cooperative communications, and design the efficient relay systems. Starting with the channel accumulation problem in the amplify-and-forward relay system, we proposed two adaptive schemes for single/multiple-relay networks respectively. These schemes exploit an adaptive guard interval (GI) technique to cover the accumulated delay spread and enhance the transmission efficiency by limiting the overhead. The proposed GI scheme can be implemented without any extra control signal. Extending the adaptive GI scheme to multiple-relay systems, we propose a relay selection strategy which achieves the trade-off between the transmission reliability and overhead by considering both the channel gain and the accumulated delay spread. We then consider resource allocation problem in the two-way decode-and-forward relay system with asymmetric traffic loads. Two allocation algorithms are respectively investigated for time-division and frequency-division relay systems to maximize the end-to-end capacity of the two-way system under a capacity ratio constraint. For the frequency-division systems, a balanced end-to-end capacity is defined as the objective function which combines the requirements of maximizing the end-to-end capacity and achieving the capacity ratio. A suboptimal algorithm is proposed for the frequency-division systems which separates subcarrier allocation and time/power allocation. It can achieve the similar performance with the optimal one with reduced complexity. In order to further enhance the transmission reliability and maintaining low processing delay, we propose an equalize-and-forward (EF) relay scheme. The EF relay equalizes the channel between source and relay to eliminate the channel accumulation without signal regeneration. To reduce the processing time, an efficient parallel structure is applied in the EF relay. Numerical results show that the EF relay exhibits low outage probability at the same data rate as compared to AF and DF schemes
    corecore