75 research outputs found

    ON SAMPLING BASED METHODS FOR THE DUBINS TRAVELING SALESMAN PROBLEM WITH NEIGHBORHOODS

    Get PDF
    In this paper, we address the problem of path planning to visit a set of regions by Dubins vehicle, which is also known as the Dubins Traveling Salesman Problem Neighborhoods (DTSPN). We propose a modification of the existing sampling-based approach to determine increasing number of samples per goal region and thus improve the solution quality if a more computational time is available. The proposed modification of the sampling-based algorithm has been compared with performance of existing approaches for the DTSPN and results of the quality of the found solutions and the required computational time are presented in the paper

    ON SAMPLING BASED METHODS FOR THE DUBINS TRAVELING SALESMAN PROBLEM WITH NEIGHBORHOODS

    Get PDF
    In this paper, we address the problem of path planning to visit a set of regions by Dubins vehicle, which is also known as the Dubins Traveling Salesman Problem Neighborhoods (DTSPN). We propose a modification of the existing sampling-based approach to determine increasing number of samples per goal region and thus improve the solution quality if a more computational time is available. The proposed modification of the sampling-based algorithm has been compared with performance of existing approaches for the DTSPN and results of the quality of the found solutions and the required computational time are presented in the paper

    Shortest Dubins Path to a Circle

    Full text link
    The Dubins path problem had enormous applications in path planning for autonomous vehicles. In this paper, we consider a generalization of the Dubins path planning problem, which is to find a shortest Dubins path that starts from a given initial position and heading, and ends on a given target circle with the heading in the tangential direction. This problem has direct applications in Dubins neighborhood traveling salesman problem, obstacle avoidance Dubins path planning problem etc. We characterize the length of the four CSC paths as a function of angular position on the target circle, and derive the conditions which to find the shortest Dubins path to the target circle

    Planning Visual Inspection Tours for a 3D Dubins Airplane Model in an Urban Environment

    Full text link
    This paper investigates the problem of planning a minimum-length tour for a three-dimensional Dubins airplane model to visually inspect a series of targets located on the ground or exterior surface of objects in an urban environment. Objects are 2.5D extruded polygons representing buildings or other structures. A visibility volume defines the set of admissible (occlusion-free) viewing locations for each target that satisfy feasible airspace and imaging constraints. The Dubins traveling salesperson problem with neighborhoods (DTSPN) is extended to three dimensions with visibility volumes that are approximated by triangular meshes. Four sampling algorithms are proposed for sampling vehicle configurations within each visibility volume to define vertices of the underlying DTSPN. Additionally, a heuristic approach is proposed to improve computation time by approximating edge costs of the 3D Dubins airplane with a lower bound that is used to solve for a sequence of viewing locations. The viewing locations are then assigned pitch and heading angles based on their relative geometry. The proposed sampling methods and heuristics are compared through a Monte-Carlo experiment that simulates view planning tours over a realistic urban environment.Comment: 18 pages, 10 figures, Presented at 2023 SciTech Intelligent Systems in Guidance Navigation and Control conferenc

    Multi-Goal Path Planning for Spray Writing with Unmanned Aerial Vehicle

    Get PDF
    Tato práce se zabývá plánováním přes více cílů pro bezpilotní vzdušné prostředky v úloze psaní textu. Motivací je použití bezpilotní helikoptéry k preciznímu sprejování nápisů například na střechy průmyslových budov. Problém psaní textu bezpilotní helikoptérou formulujeme jako plánování přes více cílů a navrhujeme nový font vhodný pro tuto aplikaci. Helikoptéra poté musí při psaní nápisu letět podél zadaného textu s využitím navrhovaného fontu. Problém hledání cesty podél textu lze formulovat jako zobecnění problému obchodního cestujícího, kde trajektorie spojující jednotlivé segmenty písmen musí respektovat dynamická omezení helikoptéry. Na spojení segmentů písmen je použit model Dubinsova vozítka, který umožňuje průlet nalezené trajektorie konstantní rychlostí bez brzdících manévrů. Navržená metoda plánování byla otestována v realistickém simulátoru a experimenty ukazují její použitelnost pro vícerotorovou helikoptéru v úloze psaní textu.This thesis describes the multi-goal path planning method for an Unmanned Aerial Vehicle (UAV) feasible for the spray writing task. The motivation is to use an autonomous UAV for precise spray writing on, e.g., roofs of industrial buildings. We formulate the writing with the UAV as a multi-goal path planning problem, and therefore, a new font suitable for the multi-goal path planning has been designed. In order to perform writing, the UAV has to travel along the input text characters. The problem can be formulated as the generalized traveling salesman problem, in which trajectories between input text segments respect the UAV constraints. We employed the Dubins vehicle to connect input text segments that allow us to traverse the final trajectory on constant speed without sharp and braking maneuvers. The implemented method has been tested in a realistic simulation environment. The experiments showed that the proposed method is feasible for the considered multirotor UAV

    THE DUBINS TRAVELING SALESMAN PROBLEM WITH CONSTRAINED COLLECTING MANEUVERS

    Get PDF
    In this paper, we introduce a variant of the Dubins traveling salesman problem (DTSP) that is called the Dubins traveling salesman problem with constrained collecting maneuvers (DTSP-CM). In contrast to the ordinary formulation of the DTSP, in the proposed DTSP-CM, the vehicle is requested to visit each target by specified collecting maneuver to accomplish the mission. The proposed problem formulation is motivated by scenarios with unmanned aerial vehicles where particular maneuvers are necessary for accomplishing the mission, such as object dropping or data collection with sensor sensitive to changes in vehicle heading. We consider existing methods for the DTSP and propose its modifications to use these methods to address a variant of the introduced DTSP-CM, where the collecting maneuvers are constrained to straight line segments
    corecore