26 research outputs found

    Physical-based optimization for non-physical image dehazing methods

    Get PDF
    Images captured under hazy conditions (e.g. fog, air pollution) usually present faded colors and loss of contrast. To improve their visibility, a process called image dehazing can be applied. Some of the most successful image dehazing algorithms are based on image processing methods but do not follow any physical image formation model, which limits their performance. In this paper, we propose a post-processing technique to alleviate this handicap by enforcing the original method to be consistent with a popular physical model for image formation under haze. Our results improve upon those of the original methods qualitatively and according to several metrics, and they have also been validated via psychophysical experiments. These results are particularly striking in terms of avoiding over-saturation and reducing color artifacts, which are the most common shortcomings faced by image dehazing methods

    Illumination Controllable Dehazing Network based on Unsupervised Retinex Embedding

    Full text link
    On the one hand, the dehazing task is an illposedness problem, which means that no unique solution exists. On the other hand, the dehazing task should take into account the subjective factor, which is to give the user selectable dehazed images rather than a single result. Therefore, this paper proposes a multi-output dehazing network by introducing illumination controllable ability, called IC-Dehazing. The proposed IC-Dehazing can change the illumination intensity by adjusting the factor of the illumination controllable module, which is realized based on the interpretable Retinex theory. Moreover, the backbone dehazing network of IC-Dehazing consists of a Transformer with double decoders for high-quality image restoration. Further, the prior-based loss function and unsupervised training strategy enable IC-Dehazing to complete the parameter learning process without the need for paired data. To demonstrate the effectiveness of the proposed IC-Dehazing, quantitative and qualitative experiments are conducted on image dehazing, semantic segmentation, and object detection tasks. Code is available at https://github.com/Xiaofeng-life/ICDehazing

    On the Duality Between Retinex and Image Dehazing

    Get PDF
    Image dehazing deals with the removal of undesired loss of visibility in outdoor images due to the presence of fog. Retinex is a color vision model mimicking the ability of the Human Visual System to robustly discount varying illuminations when observing a scene under different spectral lighting conditions. Retinex has been widely explored in the computer vision literature for image enhancement and other related tasks. While these two problems are apparently unrelated, the goal of this work is to show that they can be connected by a simple linear relationship. Specifically, most Retinex-based algorithms have the characteristic feature of always increasing image brightness, which turns them into ideal candidates for effective image dehazing by directly applying Retinex to a hazy image whose intensities have been inverted. In this paper, we give theoretical proof that Retinex on inverted intensities is a solution to the image dehazing problem. Comprehensive qualitative and quantitative results indicate that several classical and modern implementations of Retinex can be transformed into competing image dehazing algorithms performing on pair with more complex fog removal methods, and can overcome some of the main challenges associated with this problem

    Quality Enhancement for Underwater Images using Various Image Processing Techniques: A Survey

    Get PDF
    Underwater images are essential to identify the activity of underwater objects. It played a vital role to explore and utilizing aquatic resources. The underwater images have features such as low contrast, different noises, and object imbalance due to lack of light intensity. CNN-based in-deep learning approaches have improved underwater low-resolution photos during the last decade. Nevertheless, still, those techniques have some problems, such as high MSE, PSNT and high SSIM error rate. They solve the problem using different experimental analyses; various methods are studied that effectively treat different underwater image distorted scenes and improve contrast and color deviation compared to other algorithms. In terms of the color richness of the resulting images and the execution time, there are still deficiencies with the latest algorithm. In future work, the structure of our algorithm will be further adjusted to shorten the execution time, and optimization of the color compensation method under different color deviations will also be the focus of future research. With the wide application of underwater vision in different scientific research fields, underwater image enhancement can play an increasingly significant role in the process of image processing in underwater research and underwater archaeology. Most of the target images of the current algorithms are shallow water images. When the artificial light source is added to deep water images, the raw images will face more diverse noises, and image enhancement will face more challenges. As a result, this study investigates the numerous existing systems used for quality enhancement of underwater mages using various image processing techniques. We find various gaps and challenges of current systems and build the enhancement of this research for future improvement. Aa a result of this overview is to define the future problem statement to enhance this research and overcome the challenges faced by previous researchers. On other hand also improve the accuracy in terms of reducing MSE and enhancing PSNR etc
    corecore