15,388 research outputs found

    Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment

    Full text link
    We study the efficiency of quantum algorithms which aim at obtaining phase space distribution functions of quantum systems. Wigner and Husimi functions are considered. Different quantum algorithms are envisioned to build these functions, and compared with the classical computation. Different procedures to extract more efficiently information from the final wave function of these algorithms are studied, including coarse-grained measurements, amplitude amplification and measure of wavelet-transformed wave function. The algorithms are analyzed and numerically tested on a complex quantum system showing different behavior depending on parameters, namely the kicked rotator. The results for the Wigner function show in particular that the use of the quantum wavelet transform gives a polynomial gain over classical computation. For the Husimi distribution, the gain is much larger than for the Wigner function, and is bigger with the help of amplitude amplification and wavelet transforms. We also apply the same set of techniques to the analysis of real images. The results show that the use of the quantum wavelet transform allows to lower dramatically the number of measurements needed, but at the cost of a large loss of information.Comment: Revtex, 13 pages, 16 figure

    Wavelet signatures of KK-splitting of the Isoscalar Giant Quadrupole Resonance in deformed nuclei from high-resolution (p,p') scattering off 146,148,150^{146,148,150}Nd

    Get PDF
    The phenomenon of fine structure of the Isoscalar Giant Quadrupole Resonance (ISGQR) has been studied with high energy-resolution proton inelastic scattering at iThemba LABS in the chain of stable even-mass Nd isotopes covering the transition from spherical to deformed ground states. A wavelet analysis of the background-subtracted spectra in the deformed 146,148,150Nd isotopes reveals characteristic scales in correspondence with scales obtained from a Skyrme RPA calculation using the SVmas10 parameterization. A semblance analysis shows that these scales arise from the energy shift between the main fragments of the K = 0, 1 and K = 2 components.Comment: 7 pages, 6 figure

    Wavelet domain Bayesian denoising of string signal in the cosmic microwave background

    Get PDF
    An algorithm is proposed for denoising the signal induced by cosmic strings in the cosmic microwave background (CMB). A Bayesian approach is taken, based on modeling the string signal in the wavelet domain with generalized Gaussian distributions. Good performance of the algorithm is demonstrated by simulated experiments at arcminute resolution under noise conditions including primary and secondary CMB anisotropies, as well as instrumental noise.Comment: 16 pages, 11 figures. Version 2 matches version accepted for publication in MNRAS. Changes include substantial clarifications on our approach and a significant reduction of manuscript lengt

    Long-range particle correlations and wavelets

    Get PDF
    The problem of long-range correlations of particles produced in high- energy collisions is discussed. Long-range correlations involve large groups of particles. Among them are, e.g., those correlations which lead to ring-like and elliptic flow shapes of individual high-multiplicity events in the polar+azimuthal angles plane. The \w method of \an which allows to disentangle various patterns has been proposed and applied to some central lead-lead collisions at energy 158 GeV per nucleon. Previous attempts to find out the ring-like correlations and recent results on \w \an of high- energy nuclei interactions are reviewed.Comment: 21 pages, 5 Figs, Latex, to be published in Physics- Uspekhi, Nov.200

    Two-dimensional discrete wavelet analysis of multiparticle event topology in heavy ion collisions

    Full text link
    The event-by-event analysis of multiparticle production in high energy hadron and nuclei collisions can be performed using the discrete wavelet transformation. The ring-like and jet-like structures in two-dimensional angular histograms are well extracted by wavelet analysis. For the first time the method is applied to the jet-like events with background simulated by event generators, which are developed to describe nucleus-nucleus collisions at LHC energies. The jet positions are located quite well by the discrete wavelet transformation of angular particle distribution even in presence of strong background.Comment: 6 pages, 6 figure

    Seismic Ray Impedance Inversion

    Get PDF
    This thesis investigates a prestack seismic inversion scheme implemented in the ray parameter domain. Conventionally, most prestack seismic inversion methods are performed in the incidence angle domain. However, inversion using the concept of ray impedance, as it honours ray path variation following the elastic parameter variation according to Snell’s law, shows the capacity to discriminate different lithologies if compared to conventional elastic impedance inversion. The procedure starts with data transformation into the ray-parameter domain and then implements the ray impedance inversion along constant ray-parameter profiles. With different constant-ray-parameter profiles, mixed-phase wavelets are initially estimated based on the high-order statistics of the data and further refined after a proper well-to-seismic tie. With the estimated wavelets ready, a Cauchy inversion method is used to invert for seismic reflectivity sequences, aiming at recovering seismic reflectivity sequences for blocky impedance inversion. The impedance inversion from reflectivity sequences adopts a standard generalised linear inversion scheme, whose results are utilised to identify rock properties and facilitate quantitative interpretation. It has also been demonstrated that we can further invert elastic parameters from ray impedance values, without eliminating an extra density term or introducing a Gardner’s relation to absorb this term. Ray impedance inversion is extended to P-S converted waves by introducing the definition of converted-wave ray impedance. This quantity shows some advantages in connecting prestack converted wave data with well logs, if compared with the shearwave elastic impedance derived from the Aki and Richards approximation to the Zoeppritz equations. An analysis of P-P and P-S wave data under the framework of ray impedance is conducted through a real multicomponent dataset, which can reduce the uncertainty in lithology identification.Inversion is the key method in generating those examples throughout the entire thesis as we believe it can render robust solutions to geophysical problems. Apart from the reflectivity sequence, ray impedance and elastic parameter inversion mentioned above, inversion methods are also adopted in transforming the prestack data from the offset domain to the ray-parameter domain, mixed-phase wavelet estimation, as well as the registration of P-P and P-S waves for the joint analysis. The ray impedance inversion methods are successfully applied to different types of datasets. In each individual step to achieving the ray impedance inversion, advantages, disadvantages as well as limitations of the algorithms adopted are detailed. As a conclusion, the ray impedance related analyses demonstrated in this thesis are highly competent compared with the classical elastic impedance methods and the author would like to recommend it for a wider application

    A power-law distribution of phase-locking intervals does not imply critical interaction

    Get PDF
    Neural synchronisation plays a critical role in information processing, storage and transmission. Characterising the pattern of synchronisation is therefore of great interest. It has recently been suggested that the brain displays broadband criticality based on two measures of synchronisation - phase locking intervals and global lability of synchronisation - showing power law statistics at the critical threshold in a classical model of synchronisation. In this paper, we provide evidence that, within the limits of the model selection approach used to ascertain the presence of power law statistics, the pooling of pairwise phase-locking intervals from a non-critically interacting system can produce a distribution that is similarly assessed as being power law. In contrast, the global lability of synchronisation measure is shown to better discriminate critical from non critical interaction.Comment: (v3) Fixed error in Figure 1; (v2) Added references. Minor edits throughout. Clarified relationship between theoretical critical coupling for infinite size system and 'effective' critical coupling system for finite size system. Improved presentation and discussion of results; results unchanged. Revised Figure 1 to include error bars on r and N; results unchanged; (v1) 11 pages, 7 figure

    Watermarking for multimedia security using complex wavelets

    Get PDF
    This paper investigates the application of complex wavelet transforms to the field of digital data hiding. Complex wavelets offer improved directional selectivity and shift invariance over their discretely sampled counterparts allowing for better adaptation of watermark distortions to the host media. Two methods of deriving visual models for the watermarking system are adapted to the complex wavelet transforms and their performances are compared. To produce improved capacity a spread transform embedding algorithm is devised, this combines the robustness of spread spectrum methods with the high capacity of quantization based methods. Using established information theoretic methods, limits of watermark capacity are derived that demonstrate the superiority of complex wavelets over discretely sampled wavelets. Finally results for the algorithm against commonly used attacks demonstrate its robustness and the improved performance offered by complex wavelet transforms
    corecore