2,934 research outputs found

    Random curves on surfaces induced from the Laplacian determinant

    Full text link
    We define natural probability measures on cycle-rooted spanning forests (CRSFs) on graphs embedded on a surface with a Riemannian metric. These measures arise from the Laplacian determinant and depend on the choice of a unitary connection on the tangent bundle to the surface. We show that, for a sequence of graphs (Gn)(G_n) conformally approximating the surface, the measures on CRSFs of GnG_n converge and give a limiting probability measure on finite multicurves (finite collections of pairwise disjoint simple closed curves) on the surface, independent of the approximating sequence. Wilson's algorithm for generating spanning trees on a graph generalizes to a cycle-popping algorithm for generating CRSFs for a general family of weights on the cycles. We use this to sample the above measures. The sampling algorithm, which relates these measures to the loop-erased random walk, is also used to prove tightness of the sequence of measures, a key step in the proof of their convergence. We set the framework for the study of these probability measures and their scaling limits and state some of their properties

    Random Convex Hulls and Extreme Value Statistics

    Full text link
    In this paper we study the statistical properties of convex hulls of NN random points in a plane chosen according to a given distribution. The points may be chosen independently or they may be correlated. After a non-exhaustive survey of the somewhat sporadic literature and diverse methods used in the random convex hull problem, we present a unifying approach, based on the notion of support function of a closed curve and the associated Cauchy's formulae, that allows us to compute exactly the mean perimeter and the mean area enclosed by the convex polygon both in case of independent as well as correlated points. Our method demonstrates a beautiful link between the random convex hull problem and the subject of extreme value statistics. As an example of correlated points, we study here in detail the case when the points represent the vertices of nn independent random walks. In the continuum time limit this reduces to nn independent planar Brownian trajectories for which we compute exactly, for all nn, the mean perimeter and the mean area of their global convex hull. Our results have relevant applications in ecology in estimating the home range of a herd of animals. Some of these results were announced recently in a short communication [Phys. Rev. Lett. {\bf 103}, 140602 (2009)].Comment: 61 pages (pedagogical review); invited contribution to the special issue of J. Stat. Phys. celebrating the 50 years of Yeshiba/Rutgers meeting

    From lattice Quantum Electrodynamics to the distribution of the algebraic areas enclosed by random walks on Z2Z^2

    Get PDF
    In the worldline formalism, scalar Quantum Electrodynamics on a 2-dimensional lattice is related to the areas of closed loops on this lattice. We exploit this relationship in order to determine the general structure of the moments of the algebraic areas over the set of loops that have fixed number of edges in the two directions. We show that these moments are the product of a combinatorial factor that counts the number of such loops, by a polynomial in the numbers of steps in each direction. Our approach leads to an algorithm for obtaining explicit formulas for the moments of low order.Comment: 21 pages, to appear in Annales de l'Institut Henri Poincar\'e

    The scaling limits of planar LERW in finitely connected domains

    Full text link
    We define a family of stochastic Loewner evolution-type processes in finitely connected domains, which are called continuous LERW (loop-erased random walk). A continuous LERW describes a random curve in a finitely connected domain that starts from a prime end and ends at a certain target set, which could be an interior point, or a prime end, or a side arc. It is defined using the usual chordal Loewner equation with the driving function being 2B(t)\sqrt{2}B(t) plus a drift term. The distributions of continuous LERW are conformally invariant. A continuous LERW preserves a family of local martingales, which are composed of generalized Poisson kernels, normalized by their behaviors near the target set. These local martingales resemble the discrete martingales preserved by the corresponding LERW on the discrete approximation of the domain. For all kinds of targets, if the domain satisfies certain boundary conditions, we use these martingales to prove that when the mesh of the discrete approximation is small enough, the continuous LERW and the corresponding discrete LERW can be coupled together, such that after suitable reparametrization, with probability close to 1, the two curves are uniformly close to each other.Comment: Published in at http://dx.doi.org/10.1214/07-AOP342 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Lattice worldline representation of correlators in a background field

    Get PDF
    We use a discrete worldline representation in order to study the continuum limit of the one-loop expectation value of dimension two and four local operators in a background field. We illustrate this technique in the case of a scalar field coupled to a non-Abelian background gauge field. The first two coefficients of the expansion in powers of the lattice spacing can be expressed as sums over random walks on a d-dimensional cubic lattice. Using combinatorial identities for the distribution of the areas of closed random walks on a lattice, these coefficients can be turned into simple integrals. Our results are valid for an anisotropic lattice, with arbitrary lattice spacings in each direction.Comment: 54 pages, 14 figure

    Diamond Aggregation

    Full text link
    Internal diffusion-limited aggregation is a growth model based on random walk in Z^d. We study how the shape of the aggregate depends on the law of the underlying walk, focusing on a family of walks in Z^2 for which the limiting shape is a diamond. Certain of these walks -- those with a directional bias toward the origin -- have at most logarithmic fluctuations around the limiting shape. This contrasts with the simple random walk, where the limiting shape is a disk and the best known bound on the fluctuations, due to Lawler, is a power law. Our walks enjoy a uniform layering property which simplifies many of the proofs.Comment: v2 addresses referee comments, new section on the abelian propert

    Random two-component spanning forests

    Full text link
    We study random two-component spanning forests (22SFs) of finite graphs, giving formulas for the first and second moments of the sizes of the components, vertex-inclusion probabilities for one or two vertices, and the probability that an edge separates the components. We compute the limit of these quantities when the graph tends to an infinite periodic graph in Rd{\mathbb R}^d
    • …
    corecore