1,327 research outputs found

    Enhancing cryptographic protection, authentication, and authorization in cellular networks: a comprehensive research study

    Get PDF
    This research article provides an extensive analysis of novel methods of cryptographic protection as well as advancements in authentication and authorization techniques within cellular networks. The aim is to explore recent literature and identify effective authentication and authorization methods, including high-speed data encryption. The significance of this study lies in the growing need for enhanced data security in scientific research. Therefore, the focus is on identifying suitable authentication and authorization schemes, including blockchain-based approaches for distributed mobile cloud computing. The research methodology includes observation, comparison, and abstraction, allowing for a comprehensive examination of advanced encryption schemes and algorithms. Topics covered in this article include multi-factor authentication, continuous authentication, identity-based cryptography for vehicle-to-vehicle (V2V) communication, secure blockchain-based authentication for fog computing, internet of things (IoT) device mutual authentication, authentication for wireless sensor networks based on blockchain, new secure authentication schemes for standard wireless telecommunications networks, and the security aspects of 4G and 5G cellular networks. Additionally, in the paper a differentiated authentication mechanism for heterogeneous 6G networks blockchain-based is discussed. The findings presented in this article hold practical value for organizations involved in scientific research and information security, particularly in encryption and protection of sensitive data

    Enhancing healthcare services through cloud service: a systematic review

    Get PDF
    Although cloud-based healthcare services are booming, in-depth research has not yet been conducted in this field. This study aims to address the shortcomings of previous research by analyzing all journal articles from the last five years using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) systematic literature review methodology. The findings of this study highlight the benefits of cloud-based healthcare services for healthcare providers and patients, including enhanced healthcare services, data security, privacy issues, and innovative information technology (IT) service delivery models. However, this study also identifies challenges associated with using cloud services in healthcare, such as security and privacy concerns, and proposes solutions to address these issues. This study concludes by discussing future research directions and the need for a complete solution that addresses the conflicting requirements of the security, privacy, efficiency, and scalability of cloud technologies in healthcare

    Authentication enhancement in command and control networks: (a study in Vehicular Ad-Hoc Networks)

    Get PDF
    Intelligent transportation systems contribute to improved traffic safety by facilitating real time communication between vehicles. By using wireless channels for communication, vehicular networks are susceptible to a wide range of attacks, such as impersonation, modification, and replay. In this context, securing data exchange between intercommunicating terminals, e.g., vehicle-to-everything (V2X) communication, constitutes a technological challenge that needs to be addressed. Hence, message authentication is crucial to safeguard vehicular ad-hoc networks (VANETs) from malicious attacks. The current state-of-the-art for authentication in VANETs relies on conventional cryptographic primitives, introducing significant computation and communication overheads. In this challenging scenario, physical (PHY)-layer authentication has gained popularity, which involves leveraging the inherent characteristics of wireless channels and the hardware imperfections to discriminate between wireless devices. However, PHY-layerbased authentication cannot be an alternative to crypto-based methods as the initial legitimacy detection must be conducted using cryptographic methods to extract the communicating terminal secret features. Nevertheless, it can be a promising complementary solution for the reauthentication problem in VANETs, introducing what is known as “cross-layer authentication.” This thesis focuses on designing efficient cross-layer authentication schemes for VANETs, reducing the communication and computation overheads associated with transmitting and verifying a crypto-based signature for each transmission. The following provides an overview of the proposed methodologies employed in various contributions presented in this thesis. 1. The first cross-layer authentication scheme: A four-step process represents this approach: initial crypto-based authentication, shared key extraction, re-authentication via a PHY challenge-response algorithm, and adaptive adjustments based on channel conditions. Simulation results validate its efficacy, especially in low signal-to-noise ratio (SNR) scenarios while proving its resilience against active and passive attacks. 2. The second cross-layer authentication scheme: Leveraging the spatially and temporally correlated wireless channel features, this scheme extracts high entropy shared keys that can be used to create dynamic PHY-layer signatures for authentication. A 3-Dimensional (3D) scattering Doppler emulator is designed to investigate the scheme’s performance at different speeds of a moving vehicle and SNRs. Theoretical and hardware implementation analyses prove the scheme’s capability to support high detection probability for an acceptable false alarm value ≤ 0.1 at SNR ≥ 0 dB and speed ≤ 45 m/s. 3. The third proposal: Reconfigurable intelligent surfaces (RIS) integration for improved authentication: Focusing on enhancing PHY-layer re-authentication, this proposal explores integrating RIS technology to improve SNR directed at designated vehicles. Theoretical analysis and practical implementation of the proposed scheme are conducted using a 1-bit RIS, consisting of 64 × 64 reflective units. Experimental results show a significant improvement in the Pd, increasing from 0.82 to 0.96 at SNR = − 6 dB for multicarrier communications. 4. The fourth proposal: RIS-enhanced vehicular communication security: Tailored for challenging SNR in non-line-of-sight (NLoS) scenarios, this proposal optimises key extraction and defends against denial-of-service (DoS) attacks through selective signal strengthening. Hardware implementation studies prove its effectiveness, showcasing improved key extraction performance and resilience against potential threats. 5. The fifth cross-layer authentication scheme: Integrating PKI-based initial legitimacy detection and blockchain-based reconciliation techniques, this scheme ensures secure data exchange. Rigorous security analyses and performance evaluations using network simulators and computation metrics showcase its effectiveness, ensuring its resistance against common attacks and time efficiency in message verification. 6. The final proposal: Group key distribution: Employing smart contract-based blockchain technology alongside PKI-based authentication, this proposal distributes group session keys securely. Its lightweight symmetric key cryptography-based method maintains privacy in VANETs, validated via Ethereum’s main network (MainNet) and comprehensive computation and communication evaluations. The analysis shows that the proposed methods yield a noteworthy reduction, approximately ranging from 70% to 99%, in both computation and communication overheads, as compared to the conventional approaches. This reduction pertains to the verification and transmission of 1000 messages in total

    E-Tenon: An efficient privacy-preserving secure open data sharing scheme for EHR system

    Get PDF
    The transition from paper-based information to Electronic-Health-Records (EHRs) has driven various advancements in the modern healthcare industry. In many cases, patients need to share their EHR with healthcare professionals. Given the sensitive and security-critical nature of EHRs, it is essential to consider the security and privacy issues of storing and sharing EHR. However, existing security solutions excessively encrypt the whole database, thus requiring the entire database to be decrypted for each access request, which is time-consuming. On the other hand, the use of EHR for medical research (e.g., development of precision medicine and diagnostics techniques) and optimisation of practices in healthcare organisations require the EHR to be analysed. To achieve that, they should be easily accessible without compromising the patient’s privacy. In this paper, we propose an efficient technique called E-Tenon that not only securely keeps all EHR publicly accessible but also provides the desired security features. To the best of our knowledge, this is the first work in which an Open Database is used for protecting EHR. The proposed E-Tenon empowers patients to securely share their EHR under their own multi-level, fine-grained access policies. Analyses show that our system outperforms existing solutions in terms of computational complexity

    A Trust Management Framework for Vehicular Ad Hoc Networks

    Get PDF
    The inception of Vehicular Ad Hoc Networks (VANETs) provides an opportunity for road users and public infrastructure to share information that improves the operation of roads and the driver experience. However, such systems can be vulnerable to malicious external entities and legitimate users. Trust management is used to address attacks from legitimate users in accordance with a user’s trust score. Trust models evaluate messages to assign rewards or punishments. This can be used to influence a driver’s future behaviour or, in extremis, block the driver. With receiver-side schemes, various methods are used to evaluate trust including, reputation computation, neighbour recommendations, and storing historical information. However, they incur overhead and add a delay when deciding whether to accept or reject messages. In this thesis, we propose a novel Tamper-Proof Device (TPD) based trust framework for managing trust of multiple drivers at the sender side vehicle that updates trust, stores, and protects information from malicious tampering. The TPD also regulates, rewards, and punishes each specific driver, as required. Furthermore, the trust score determines the classes of message that a driver can access. Dissemination of feedback is only required when there is an attack (conflicting information). A Road-Side Unit (RSU) rules on a dispute, using either the sum of products of trust and feedback or official vehicle data if available. These “untrue attacks” are resolved by an RSU using collaboration, and then providing a fixed amount of reward and punishment, as appropriate. Repeated attacks are addressed by incremental punishments and potentially driver access-blocking when conditions are met. The lack of sophistication in this fixed RSU assessment scheme is then addressed by a novel fuzzy logic-based RSU approach. This determines a fairer level of reward and punishment based on the severity of incident, driver past behaviour, and RSU confidence. The fuzzy RSU controller assesses judgements in such a way as to encourage drivers to improve their behaviour. Although any driver can lie in any situation, we believe that trustworthy drivers are more likely to remain so, and vice versa. We capture this behaviour in a Markov chain model for the sender and reporter driver behaviours where a driver’s truthfulness is influenced by their trust score and trust state. For each trust state, the driver’s likelihood of lying or honesty is set by a probability distribution which is different for each state. This framework is analysed in Veins using various classes of vehicles under different traffic conditions. Results confirm that the framework operates effectively in the presence of untrue and inconsistent attacks. The correct functioning is confirmed with the system appropriately classifying incidents when clarifier vehicles send truthful feedback. The framework is also evaluated against a centralized reputation scheme and the results demonstrate that it outperforms the reputation approach in terms of reduced communication overhead and shorter response time. Next, we perform a set of experiments to evaluate the performance of the fuzzy assessment in Veins. The fuzzy and fixed RSU assessment schemes are compared, and the results show that the fuzzy scheme provides better overall driver behaviour. The Markov chain driver behaviour model is also examined when changing the initial trust score of all drivers

    Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

    Get PDF
    The way we travel is changing rapidly and Cooperative Intelligent Transportation Systems (C-ITSs) are at the forefront of this evolution. However, the adoption of C-ITSs introduces new risks and challenges, making cybersecurity a top priority for ensuring safety and reliability. Building on this premise, this paper introduces an envisaged Cybersecurity Centre of Excellence (CSCE) designed to bolster researching, testing, and evaluating the cybersecurity of C-ITSs. We explore the design, functionality, and challenges of CSCE's testing facilities, outlining the technological, security, and societal requirements. Through a thorough survey and analysis, we assess the effectiveness of these systems in detecting and mitigating potential threats, highlighting their flexibility to adapt to future C-ITSs. Finally, we identify current unresolved challenges in various C-ITS domains, with the aim of motivating further research into the cybersecurity of C-ITSs

    BLEND: Efficient and blended IoT data storage and communication with application layer security

    Full text link
    Many IoT use cases demand both secure storage and secure communication. Resource-constrained devices cannot afford having one set of crypto protocols for storage and another for communication. Lightweight application layer security standards are being developed for IoT communication. Extending these protocols for secure storage can significantly reduce communication latency and local processing. We present BLEND, combining secure storage and communication by storing IoT data as pre-computed encrypted network packets. Unlike local methods, BLEND not only eliminates separate crypto for secure storage needs, but also eliminates a need for real-time crypto operations, reducing the communication latency significantly. Our evaluation shows that compared with a local solution, BLEND reduces send latency from 630 microseconds to 110 microseconds per packet. BLEND enables PKI based key management while being sufficiently lightweight for IoT. BLEND doesn't need modifications to communication standards used when extended for secure storage, and can therefore preserve underlying protocols' security guarantees.Comment: Accepted in IEEE CSR 2022. 10 pages, 7 figure

    FIDO2 the Rescue? Platform vs. Roaming Authentication on Smartphones

    Full text link
    Modern smartphones support FIDO2 passwordless authentication using either external security keys or internal biometric authentication, but it is unclear whether users appreciate and accept these new forms of web authentication for their own accounts. We present the first lab study (N=87) comparing platform and roaming authentication on smartphones, determining the practical strengths and weaknesses of FIDO2 as perceived by users in a mobile scenario. Most participants were willing to adopt passwordless authentication during our in-person user study, but closer analysis shows that participants prioritize usability, security, and availability differently depending on the account type. We identify remaining adoption barriers that prevent FIDO2 from succeeding password authentication, such as missing support for contemporary usage patterns, including account delegation and usage on multiple clients.Comment: 16 pages, 6 figures, the dataset is available at https://doi.org/10.5281/zenodo.7572697 and the source code is available at https://github.com/seemoo-lab/fido2-the-smartphon
    corecore