1,445 research outputs found

    On the discreteness of capacity-achieving distributions for the censored channel

    Full text link

    On the Capacity of SWIPT Systems with a Nonlinear Energy Harvesting Circuit

    Full text link
    In this paper, we study information-theoretic limits for simultaneous wireless information and power transfer (SWIPT) systems employing a practical nonlinear radio frequency (RF) energy harvesting (EH) receiver. In particular, we consider a three-node system with one transmitter that broadcasts a common signal to separated information decoding (ID) and EH receivers. Owing to the nonlinearity of the EH receiver circuit, the efficiency of wireless power transfer depends significantly on the waveform of the transmitted signal. In this paper, we aim to answer the following fundamental question: What is the optimal input distribution of the transmit waveform that maximizes the rate of the ID receiver for a given required harvested power at the EH receiver? In particular, we study the capacity of a SWIPT system impaired by additive white Gaussian noise (AWGN) under average-power (AP) and peak-power (PP) constraints at the transmitter and an EH constraint at the EH receiver. Using Hermite polynomial bases, we prove that the optimal capacity-achieving input distribution that maximizes the rate-energy region is unique and discrete with a finite number of mass points. Furthermore, we show that the optimal input distribution for the same problem without PP constraint is discrete whenever the EH constraint is active and continuous zero-mean Gaussian, otherwise. Our numerical results show that the rate-energy region is enlarged for a larger PP constraint and that the rate loss of the considered SWIPT system compared to the AWGN channel without EH receiver is reduced by increasing the AP budget.Comment: 7 pages, 4 figures, submitted for possible conference publicatio

    The Noncoherent Rician Fading Channel -- Part I : Structure of the Capacity-Achieving Input

    Full text link
    Transmission of information over a discrete-time memoryless Rician fading channel is considered where neither the receiver nor the transmitter knows the fading coefficients. First the structure of the capacity-achieving input signals is investigated when the input is constrained to have limited peakedness by imposing either a fourth moment or a peak constraint. When the input is subject to second and fourth moment limitations, it is shown that the capacity-achieving input amplitude distribution is discrete with a finite number of mass points in the low-power regime. A similar discrete structure for the optimal amplitude is proven over the entire SNR range when there is only a peak power constraint. The Rician fading with phase-noise channel model, where there is phase uncertainty in the specular component, is analyzed. For this model it is shown that, with only an average power constraint, the capacity-achieving input amplitude is discrete with a finite number of levels. For the classical average power limited Rician fading channel, it is proven that the optimal input amplitude distribution has bounded support.Comment: To appear in the IEEE Transactions on Wireless Communication
    • …
    corecore