4,143 research outputs found

    On the Dirty Paper Channel with Fast Fading Dirt

    Full text link
    Costa`s "writing on dirty paper" result establishes that full state pre-cancellation can be attained in the Gel`fand-Pinsker problem with additive state and additive white Gaussian noise. This result holds under the assumptions that full channel knowledge is available at both the transmitter and the receiver. In this work we consider the scenario in which the state is multiplied by an ergodic fading process which is not known at the encoder. We study both the case in which the receiver has knowledge of the fading and the case in which it does not: for both models we derive inner and outer bounds to capacity and determine the distance between the two bounds when possible. For the channel without fading knowledge at either the transmitter or the receiver, the gap between inner and outer bounds is finite for a class of fading distributions which includes a number of canonical fading models. In the capacity approaching strategy for this class, the transmitter performs Costa`s pre-coding against the mean value of the fading times the state while the receiver treats the remaining signal as noise. For the case in which only the receiver has knowledge of the fading, we determine a finite gap between inner and outer bounds for two classes of discrete fading distribution. The first class of distributions is the one in which there exists a probability mass larger than one half while the second class is the one in which the fading is uniformly distributed over values that are exponentially spaced apart. Unfortunately, the capacity in the case of a continuous fading distribution remains very hard to characterize

    Transparent Spectrum Co-Access in Cognitive Radio Networks

    Get PDF
    The licensed wireless spectrum is currently under-utilized by as much as 85%. Cognitive radio networks have been proposed to employ dynamic spectrum access to share this under-utilized spectrum between licensed primary user transmissions and unlicensed secondary user transmissions. Current secondary user opportunistic spectrum access methods, however, remain limited in their ability to provide enough incentive to convince primary users to share the licensed spectrum, and they rely on primary user absence to guarantee secondary user performance. These challenges are addressed by developing a Dynamic Spectrum Co-Access Architecture (DSCA) that allows secondary user transmissions to co-access transparently and concurrently with primary user transmissions. This work exploits dirty paper coding to precode the cognitive radio channel utilizing the redundant information found in primary user relay networks. Subsequently, the secondary user is able to provide incentive to the primary user through increased SINR to encourage licensed spectrum sharing. Then a region of co-accessis formulated within which any secondary user can co-access the licensed channel transparently to the primary user. In addition, a Spectrum Co-Access Protocol (SCAP) is developed to provide secondary users with guaranteed channel capacity and while minimizing channel access times. The numerical results show that the SCAP protocol build on the DSCA architecture is able to reduce secondary user channel access times compared with opportunistic spectrum access and increased secondary user network throughput. Finally, we present a novel method for increasing the secondary user channel capacity through sequential dirty paper coding. By exploiting similar redundancy in secondary user multi-hop networks as in primary user relay networks, the secondary user channel capacity can be increased. As a result of our work in overlay spectrum sharing through secondary user channel precoding, we provide a compelling argument that the current trend towards opportunistic spectrum sharing needs to be reconsidered. This work asserts that limitations of opportunistic spectrum access to transparently provide primary users incentive and its detrimental effect on secondary user performance due to primary user activity are enough to motivate further study into utilizing channel precoding schemes. The success of cognitive radios and its adoption into federal regulator policy will rely on providing just this type of incentive

    Doctoral Thesis: Massive MIMO in Real Propagation Environments

    Get PDF
    Mobile communications are now evolving towards the fifth generation (5G). In the near future, we expect an explosive increase in the number of connected devices, such as phones, tablets, sensors, connected vehicles and so on. Much higher data rates than in today's 4G systems are required. In the 5G visions, better coverage in remote regions is also included, aiming for bringing the current "4 billion unconnected" population into the online world. There is also a great interest in "green communications", for less energy consumption in the ICT (information and communication technology) industry. Massive MIMO is a potential technology to fulfill the requirements and visions. By equipping a base station with a large number, say tens to hundreds, of antennas, many terminals can be served in the same time-frequency resource without severe inter-user interference. Through "aggressive" spatial multiplexing, higher data rates can be achieved without increasing the required spectrum. Processing efforts can be made at the base station side, allowing terminals to have simple and cheap hardware. By exploiting the many spatial degrees of freedom, linear precoding/detection schemes can be used to achieve near-optimal performance. The large number of antennas also brings the advantage of large array gain, resulting in an increase in received signal strength. Better coverage is thus achieved. On the other hand, transmit power from base stations and terminals can be scaled down to pursue energy efficiency. In the last five years, a lot of theoretical studies have been done, showing the extraordinary advantages of massive MIMO. However, the investigations are mainly based on theoretical channels with independent and identically distributed (i.i.d.) Gaussian coefficients, and sometimes assuming unlimited number of antennas. When bringing this new technology from theory to practice, it is important to understand massive MIMO behavior in real propagation channels using practical antenna arrays. Not much has been known about real massive MIMO channels, and whether the claims about massive MIMO still hold there, until the studies in this thesis were done. The thesis study connects the "ideal" world of theory to the "non-ideal" reality. Channel measurements for massive MIMO in the 2.6 GHz band were performed, in different propagation environments and using different types of antenna arrays. Based on obtained real-life channel data, the studies include • channel characterization to identify important massive MIMO properties, • evaluation of propagation conditions in real channels and corresponding massive MIMO performance, • channel modeling for massive MIMO to capture the identified channel properties, and • reduction of massive MIMO hardware complexity through antenna selection. The investigations in the thesis conclude that massive MIMO works efficiently in real propagation environments. The theoretical advantages, as observed in i.i.d. Rayleigh channels, can also be harvested in real channels. Important propagation effects are identified for massive MIMO scenarios, including channel variations over large arrays, multipath-component (MPC) lifetime, and 3D propagation. These propagation properties are modeled and included into the COST 2100 MIMO channel model as an extension for massive MIMO. The study on antenna selection shows that characteristics in real channels allow for significant reductions of massive MIMO complexity without significant performance loss. As one of the world's first research work on massive MIMO behavior in real propagation channels, the studies in this thesis promote massive MIMO as a practical technology for future communication systems
    • …
    corecore