508 research outputs found

    Fingerprint Verification Using Spectral Minutiae Representations

    Get PDF
    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and orientations suffering from various deformations such as translation, rotation, and scaling. The spectral minutiae representation introduced in this paper is a novel method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with template protection schemes that require a fixed-length feature vector. This paper introduces the concept of algorithms for two representation methods: the location-based spectral minutiae representation and the orientation-based spectral minutiae representation. Both algorithms are evaluated using two correlation-based spectral minutiae matching algorithms. We present the performance of our algorithms on three fingerprint databases. We also show how the performance can be improved by using a fusion scheme and singular points

    Robust and efficient Fourier-Mellin transform approximations for invariant grey-level image description and reconstruction

    No full text
    International audienceThis paper addresses the gray-level image representation ability of the Fourier-Mellin Transform (FMT) for pattern recognition, reconstruction and image database retrieval. The main practical di±culty of the FMT lies in the accuracy and e±ciency of its numerical approximation and we propose three estimations of its analytical extension. Comparison of these approximations is performed from discrete and ¯nite-extent sets of Fourier- Mellin harmonics by means of experiments in: (i) image reconstruction via both visual inspection and the computation of a reconstruction error; and (ii) pattern recognition and discrimination by using a complete and convergent set of features invariant under planar similarities. Experimental results on real gray-level images show that it is possible to recover an image to within a speci¯ed degree of accuracy and to classify objects reliably even when a large set of descriptors is used. Finally, an example will be given, illustrating both theoretical and numerical results in the context of content-based image retrieval

    Vectorial Signatures for Pattern Recognition

    Get PDF

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Registration of holographic images based on the integral transformation

    Get PDF
    The paper describes the possibilities of using Fourier-Mellin transform for registering images of holographic interferograms. Registered holographic images will then allow automating their evaluation. Registration based on changes in image intensities using the discrete integral transforms was selected of the methods of registration. Whereas it was necessary to register the images, which are not only translated, but also rotated and with the changed of scale, the Fourier-Mellin transform was used. Use of the image discrete transforms is original in this field, proposed processing algorithm contains also simplified mean of calculating the angle of rotation of the test image instead of common Fourier-Mellin transformation method sequence

    Method of Synthesized Phase Objects in the Optical Pattern Recognition Problem

    Get PDF
    To solve the pattern recognition problem, a method of synthesized phase objects (SPO-method) is suggested. The essence of the suggested method is that synthesized phase objects are used instead of real amplitude objects. The former is object-dependent phase distributions calculated using the iterative Fourier transform algorithm. The method is experimentally studied with an optical-digital Vanderlugt and joint Fourier transform 4F-correlators. The development of the SPO-method for the rotation invariant pattern recognition is considered as well. We present the comparative analysis of recognition results with the use of the conventional and proposed methods, estimate the sensitivity of the latter to distortions of the structure of objects, and determine the applicability limits. It is demonstrated that the SPO-method allows one: (a) to simplify the procedure of choice of recognition signs (criteria); (b) to obtain one-type δ-like recognition signals irrespective of the type of objects; and (c) to improve the signal-to-noise ratio for correlation signals by 20–30 dB on the average. To introduce recognition objects in a correlator, we use SLM LC-R 2500 and SLM HEO 1080 Pluto devices
    corecore