94,635 research outputs found

    Efficient dominant point detection based on discrete curve structure

    Get PDF
    International audienceIn this paper, we investigate the problem of dominant point detection on digital curves which consists in finding points with local maximum curvature. Thanks to previous studies of the decomposition of curves into sequence of discrete structures [5–7], namely maximal blurred segments of width [13], an initial algorithm has been proposed in [14] to detect dominant points. However, an heuristic strategy is used to identify the dominant points. We now propose a modified algorithm without heuristics but a simple measure of angle. In addition, an application of polygonal simplification is as well proposed to reduce the number of detected dominant points by associating a weight to each of them. The experimental results demonstrate the e and robustness of the proposed method

    Challenges in video based object detection in maritime scenario using computer vision

    Get PDF
    This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here

    Social Fingerprinting: detection of spambot groups through DNA-inspired behavioral modeling

    Full text link
    Spambot detection in online social networks is a long-lasting challenge involving the study and design of detection techniques capable of efficiently identifying ever-evolving spammers. Recently, a new wave of social spambots has emerged, with advanced human-like characteristics that allow them to go undetected even by current state-of-the-art algorithms. In this paper, we show that efficient spambots detection can be achieved via an in-depth analysis of their collective behaviors exploiting the digital DNA technique for modeling the behaviors of social network users. Inspired by its biological counterpart, in the digital DNA representation the behavioral lifetime of a digital account is encoded in a sequence of characters. Then, we define a similarity measure for such digital DNA sequences. We build upon digital DNA and the similarity between groups of users to characterize both genuine accounts and spambots. Leveraging such characterization, we design the Social Fingerprinting technique, which is able to discriminate among spambots and genuine accounts in both a supervised and an unsupervised fashion. We finally evaluate the effectiveness of Social Fingerprinting and we compare it with three state-of-the-art detection algorithms. Among the peculiarities of our approach is the possibility to apply off-the-shelf DNA analysis techniques to study online users behaviors and to efficiently rely on a limited number of lightweight account characteristics

    Follow-up Observations of the Second and Third Known Pulsating Hot DQ White Dwarfs

    Full text link
    We present follow-up time-series photometric observations that confirm and extend the results of the significant discovery made by Barlow et al.(2008) that the Hot DQ white dwarfs SDSS J220029.08-074121.5 and SDSS J234843.30-094245.3 are luminosity variable. These are the second and third known members of a new class of pulsating white dwarfs, after the prototype SDSS J142625.71+575218.3 (Montgomery et al. 2008). We find that the light curve of SDSS J220029.08-074121.5 is dominated by an oscillation at 654.397+-0.056 s, and that the light pulse folded on that period is highly nonlinear due to the presence of the first and second harmonic of the main pulsation. We also present evidence for the possible detection of two additional pulsation modes with low amplitudes and periods of 577.576+-0.226 s and 254.732+-0.048 s in that star. Likewise, we find that the light curve of SDSS J234843.30-094245.3 is dominated by a pulsation with a period of 1044.168+-0.012 s, but with no sign of harmonic components. A new oscillation, with a low amplitude and a period of 416.919+-0.004 s, is also probably detected in that second star. We argue, on the basis of the very different folded pulse shapes, that SDSS J220029.08-074121.5 is likely magnetic, while SDSS J234843.30-094245.3 is probably not.Comment: 12 pages, 19 figures, accepted for publication in Ap

    Shape matching by curve modelling and alignment

    Get PDF
    Automatic information retrieval in the eld of shape recognition has been widely covered by many research elds. Various techniques have been developed using different approaches such as intensity-based, modelbased and shape-based methods. Whichever is the way to represent the objects in images, a recognition method should be robust in the presence of scale change, translation and rotation. In this paper we present a new recognition method based on a curve alignment technique, for planar image contours. The method consists of various phases including extracting outlines of images, detecting signicant points and aligning curves. The dominant points can be manually or automatically detected. The matching phase uses the idea of calculating the overlapping indices between shapes as similarity measures. To evaluate the effectiveness of the algorithm, two databases of 216 and 99 images have been used. A performance analysis and comparison is provided by precision-recall curves
    • 

    corecore