500 research outputs found

    Weakly supervised deep learning for the detection of domain generation algorithms

    Get PDF
    Domain generation algorithms (DGAs) have become commonplace in malware that seeks to establish command and control communication between an infected machine and the botmaster. DGAs dynamically and consistently generate large volumes of malicious domain names, only a few of which are registered by the botmaster, within a short time window around their generation time, and subsequently resolved when the malware on the infected machine tries to access them. Deep neural networks that can classify domain names as benign or malicious are of great interest in the real-time defense against DGAs. In contrast with traditional machine learning models, deep networks do not rely on human engineered features. Instead, they can learn features automatically from data, provided that they are supplied with sufficiently large amounts of suitable training data. Obtaining cleanly labeled ground truth data is difficult and time consuming. Heuristically labeled data could potentially provide a source of training data for weakly supervised training of DGA detectors. We propose a set of heuristics for automatically labeling domain names monitored in real traffic, and then train and evaluate classifiers with the proposed heuristically labeled dataset. We show through experiments on a dataset with 50 million domain names that such heuristically labeled data is very useful in practice to improve the predictive accuracy of deep learning-based DGA classifiers, and that these deep neural networks significantly outperform a random forest classifier with human engineered features

    MAGMA network behavior classifier for malware traffic

    Get PDF
    Malware is a major threat to security and privacy of network users. A large variety of malware is typically spread over the Internet, hiding in benign traffic. New types of malware appear every day, challenging both the research community and security companies to improve malware identification techniques. In this paper we present MAGMA, MultilAyer Graphs for MAlware detection, a novel malware behavioral classifier. Our system is based on a Big Data methodology, driven by real-world data obtained from traffic traces collected in an operational network. The methodology we propose automatically extracts patterns related to a specific input event, i.e., a seed, from the enormous amount of events the network carries. By correlating such activities over (i) time, (ii) space, and (iii) network protocols, we build a Network Connectivity Graph that captures the overall “network behavior” of the seed. We next extract features from the Connectivity Graph and design a supervised classifier. We run MAGMA on a large dataset collected from a commercial Internet Provider where 20,000 Internet users generated more than 330 million events. Only 42,000 are flagged as malicious by a commercial IDS, which we consider as an oracle. Using this dataset, we experimentally evaluate MAGMA accuracy and robustness to parameter settings. Results indicate that MAGMA reaches 95% accuracy, with limited false positives. Furthermore, MAGMA proves able to identify suspicious network events that the IDS ignored
    • …
    corecore