987 research outputs found

    Iterative Detection of Diagonal Block Space Time Trellis Codes, TCM and Reversible Variable Length Codes for Transmission over Rayleigh Fading Channels

    No full text
    Iterative detection of Diagonal Block Space Time Trellis Codes (DBSTTCs), Trellis Coded Modulation (TCM) and Reversible Variable Length Codes (RVLCs) is proposed. With the aid of efficient iterative decoding, the proposed scheme is capable of providing full transmit diversity and a near channel capacity performance. The performance of the proposed scheme was evaluated when communicating over uncorrelated Rayleigh fading channels. Explicitly, significant iteration gains were achieved by the proposed scheme, which was capable of performing within 2~dB from the channel capacity

    Variable Length Space Time Coded Modulation

    No full text
    A Variable Length Space Time Coded Modulation (VL-STCM) scheme capable of simultaneously providing coding, multiplexing and diversity gains is proposed. The scheme advocated achieves its best performance for correlated sources, where the source symbols exhibit a nonuniform probability of occurrence. The source symbols are encoded using an optimal trellis encoder into variablelength modulated signals and mapped to both the spatial and time domains. More explicitly, the proposed VL-STCM arrangement is a jointly designed source coding, channel coding, modulation and spatial diversity/multiplexing scheme. It is shown that the higher the source correlation, the higher the achievable performance gain of the scheme. Furthermore, the performance of the VL-STCM scheme is about 6 dB better than that of the Fixed Length STCM (FL-STCM) benchmarker at a source symbol error ratio of 10?4

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Joint space-time trellis decoding and channel estimation in correlated fading channels

    Get PDF
    Copyright © 2004 IEEEThis letter addresses the issue of joint space-time trellis decoding and channel estimation in time-varying fading channels that are spatially and temporally correlated. A recursive space-time receiver which incorporates per-survivor processing (PSP) and Kalman filtering into the Viterbi algorithm is proposed. This approach generalizes existing work to the correlated fading channel case. The channel time-evolution is modeled by a multichannel autoregressive process, and a bank of Kalman filters is used to track the channel variations. Computer simulation results show that a performance close to the maximum likelihood receiver with perfect channel state information (CSI) can be obtained. The effects of the spatial correlation on the performance of a receiver that assumes independent fading channels are examined.Van Khanh Nguyen and Langford B. Whit

    Space-Time Coding and Space-Time Channel Modelling for Wireless Communications

    No full text
    In this thesis we investigate the effects of the physical constraints such as antenna aperture size, antenna geometry and non-isotropic scattering distribution parameters (angle of arrival/departure and angular spread) on the performance of coherent and non-coherent space-time coded wireless communication systems. First, we derive analytical expressions for the exact pairwise error probability (PEP) and PEP upper-bound of coherent and non-coherent space-time coded systems operating over spatially correlated fading channels using a moment-generating function-based approach. These analytical expressions account for antenna spacing, antenna geometries and scattering distribution models. Using these new PEP expressions, the degree of the effect of antenna spacing, antenna geometry and angular spread is quantified on the diversity advantage (robustness) given by a space-time code. It is shown that the number of antennas that can be employed in a fixed antenna aperture without diminishing the diversity advantage of a space-time code is determined by the size of the antenna aperture, antenna geometry and the richness of the scattering environment. ¶ In realistic channel environments the performance of space-time coded multiple-input multiple output (MIMO) systems is significantly reduced due to non-ideal antenna placement and non-isotropic scattering. In this thesis, by exploiting the spatial dimension of a MIMO channel we introduce the novel use of linear spatial precoding (or power-loading) based on fixed and known parameters of MIMO channels to ameliorate the effects of non-ideal antenna placement on the performance of coherent and non-coherent space-time codes. ..

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    Distributed convolutional-coded differential space-time block coding for cooperative communications

    No full text
    A low complexity distributed coding scheme is proposed for communications over Rayleigh fading channels. Convolutional Coding (CC) assisted Differential Phase-Shift Keying (DPSK) modulation is employed at the source node for conveying the source signals to two relay nodes as well as to the destination node during the first transmission period. Iterative detection exchanging extrinsic information between the DPSK demapper and CC decoder is carried out at each relay node in order to recover the source signals. Then, the CC-encoded bits are re-encoded by the two relays to generate Differential Space-Time Block Coding (DSTBC) symbols for transmission to the destination node during the second transmission period. At the destination node, iterative decoding exchanging extrinsic information is invoked between the DPSK demapper and the concatenated CC-DSTBC decoder, where the later is viewed as a single amalgamated decoder. The relay and destination nodes do not have to estimate the channel’s fading coefficients due to the employment of DPSK and DSTBC schemes. Our design requires only two decoding iterations between the DPSK and CC decoders at each relay in order to further reduce the complexity of the relay nodes. Our distributed coding scheme assisted by two low-complexity relay nodes outperforms the non-cooperative benchmarker scheme by about 8 dBs, when aiming for a bit error ratio of 10-5

    The Error Performance and Fairness of CUWB Correlated Channels

    Get PDF
    AbstractThe symbol period becomes smaller compared to the channel delay in multiband orthogonal frequency division multiplexing (MB-OFDM) cognitive ultra wideband (CUWB) wireless communications, the transmitted signals experiences frequency-selective fading and leads to performance degradation. In this paper, a new design method for space-time trellis codes in MB-OFDM systems with correlated Rayleigh fading channels is introduced. This method converts the single output code symbol into several STTC code symbols, which are to be transmitted simultaneously from multiple transmitter-antennas. By using Viterbi optimal soft decision decoding algorithm, we investigate both quasi-static and interleaved channels and demonstrate how the spatial fading correlation affects the performance of space–time codes over these two different MB-OFDM wireless channel models. Simulation results show that the performance of space–time code is to be robust to spatial correlation. When the system bandwidth increases, the long term fairness quality will gradually become better and finally converges to 1
    corecore