6,293 research outputs found

    Joint data detection and channel estimation for OFDM systems

    Get PDF
    We develop new blind and semi-blind data detectors and channel estimators for orthogonal frequency-division multiplexing (OFDM) systems. Our data detectors require minimizing a complex, integer quadratic form in the data vector. The semi-blind detector uses both channel correlation and noise variance. The quadratic for the blind detector suffers from rank deficiency; for this, we give a low-complexity solution. Avoiding a computationally prohibitive exhaustive search, we solve our data detectors using sphere decoding (SD) and V-BLAST and provide simple adaptations of the SD algorithm. We consider how the blind detector performs under mismatch, generalize the basic data detectors to nonunitary constellations, and extend them to systems with pilots and virtual carriers. Simulations show that our data detectors perform well

    Blind Receiver Design for OFDM Systems Over Doubly Selective Channels

    Get PDF
    We develop blind data detectors for orthogonal frequency-division multiplexing (OFDM) systems over doubly selective channels by exploiting both frequency-domain and time-domain correlations of the received signal. We thus derive two blind data detectors: a time-domain data detector and a frequency-domain data detector. We also contribute a reduced complexity, suboptimal version of a time-domain data detector that performs robustly when the normalized Doppler rate is less than 3%. Our frequency-domain data detector and suboptimal time-domain data detector both result in integer least-squares (LS) problems. We propose the use of the V-BLAST detector and the sphere decoder. The time-domain data detector is not limited to the Doppler rates less than 3%, but cannot be posed as an integer LS problem. Our solution is to develop an iterative algorithm that starts from the suboptimal time-domain data detector output. We also propose channel estimation and prediction algorithms using a polynomial expansion model, and these estimators work with data detectors (decision-directed mode) to reduce the complexity. The estimators for the channel statistics and the noise variance are derived using the likelihood function for the data. Our blind data detectors are fairly robust against the parameter mismatch

    Semiblind Channel Estimation and Data Detection for OFDM Systems With Optimal Pilot Design

    Get PDF
    This paper considers semiblind channel estimation and data detection for orthogonal frequency-division multiplexing (OFDM) over frequency-selective fading channels. We show that the samples of an OFDM symbol are jointly complex Gaussian distributed, where the mean and covariance are determined by the locations and values of fixed pilot symbols. We exploit this distribution to derive a novel maximum-likelihood (ML) semiblind gradient-descent channel estimator. By exploiting the channel impulse response (CIR) statistics, we also derive a semiblind data detector for both Rayleigh and Ricean fading channels. Furthermore, we develop an enhanced data detector, which uses the estimator error statistics to mitigate the effect of channel estimation errors. Efficient implementation of both the semiblind and the improved data detectors is provided via sphere decoding and nulling-canceling detection. We also derive the Cramér-Rao bound (CRB) and design optimal pilots by minimizing the CRB. Our proposed channel estimator and data detector exhibit high bandwidth efficiency (requiring only a few pilot symbols), achieve the CRB, and also nearly reach the performance of an ideal reference receiver

    Matched direction detectors and estimators for array processing with subspace steering vector uncertainties

    Get PDF
    In this paper, we consider the problem of estimating and detecting a signal whose associated spatial signature is known to lie in a given linear subspace but whose coordinates in this subspace are otherwise unknown, in the presence of subspace interference and broad-band noise. This situation arises when, on one hand, there exist uncertainties about the steering vector but, on the other hand, some knowledge about the steering vector errors is available. First, we derive the maximum-likelihood estimator (MLE) for the problem and compute the corresponding Cramer-Rao bound. Next, the maximum-likelihood estimates are used to derive a generalized likelihood ratio test (GLRT). The GLRT is compared and contrasted with the standard matched subspace detectors. The performances of the estimators and detectors are illustrated by means of numerical simulations

    A Data-Aided Channel Estimation Scheme for Decoupled Systems in Heterogeneous Networks

    Get PDF
    Uplink/downlink (UL/DL) decoupling promises more flexible cell association and higher throughput in heterogeneous networks (HetNets), however, it hampers the acquisition of DL channel state information (CSI) in time-division-duplex (TDD) systems due to different base stations (BSs) connected in UL/DL. In this paper, we propose a novel data-aided (DA) channel estimation scheme to address this problem by utilizing decoded UL data to exploit CSI from received UL data signal in decoupled HetNets where a massive multiple-input multiple-output BS and dense small cell BSs are deployed. We analytically estimate BER performance of UL decoded data, which are used to derive an approximated normalized mean square error (NMSE) expression of the DA minimum mean square error (MMSE) estimator. Compared with the conventional least square (LS) and MMSE, it is shown that NMSE performances of all estimators are determined by their signal-to-noise ratio (SNR)-like terms and there is an increment consisting of UL data power, UL data length and BER values in the SNR-like term of DA method, which suggests DA method outperforms the conventional ones in any scenarios. Higher UL data power, longer UL data length and better BER performance lead to more accurate estimated channels with DA method. Numerical results verify that the analytical BER and NMSE results are close to the simulated ones and a remarkable gain in both NMSE and DL rate can be achieved by DA method in multiple scenarios with different modulations
    corecore