13,283 research outputs found

    On the definition of parallel independence in the algebraic approaches to graph transformation

    Get PDF
    Parallel independence between transformation steps is a basic and well-understood notion of the algebraic approaches to graph transformation, and typically guarantees that the two steps can be applied in any order obtaining the same resulting graph, up to isomorphism. The concept has been redefined for several algebraic approaches as variations of a classical “algebraic” condition, requiring that each matching morphism factorizes through the context graphs of the other transformation step. However, looking at some classical papers on the double-pushout approach, one finds that the original definition of parallel independence was formulated in set-theoretical terms, requiring that the intersection of the images of the two left-hand sides in the host graph is contained in the intersection of the two interface graphs. The relationship between this definition and the standard algebraic one is discussed in this position paper, both in the case of left-linear and non-left-linear rules

    Subtyping for Hierarchical, Reconfigurable Petri Nets

    Full text link
    Hierarchical Petri nets allow a more abstract view and reconfigurable Petri nets model dynamic structural adaptation. In this contribution we present the combination of reconfigurable Petri nets and hierarchical Petri nets yielding hierarchical structure for reconfigurable Petri nets. Hierarchies are established by substituting transitions by subnets. These subnets are themselves reconfigurable, so they are supplied with their own set of rules. Moreover, global rules that can be applied in all of the net, are provided

    A Reformulation of Matrix Graph Grammars with Boolean Complexes

    Full text link
    Prior publication in the Electronic Journal of Combinatorics.Graph transformation is concerned with the manipulation of graphs by means of rules. Graph grammars have been traditionally studied using techniques from category theory. In previous works, we introduced Matrix Graph Grammars (MGG) as a purely algebraic approach for the study of graph dynamics, based on the representation of simple graphs by means of their adjacency matrices. The observation that, in addition to positive information, a rule implicitly defines negative conditions for its application (edges cannot become dangling, and cannot be added twice as we work with simple digraphs) has led to a representation of graphs as two matrices encoding positive and negative information. Using this representation, we have reformulated the main concepts in MGGs, while we have introduced other new ideas. In particular, we present (i) a new formulation of productions together with an abstraction of them (so called swaps), (ii) the notion of coherence, which checks whether a production sequence can be potentially applied, (iii) the minimal graph enabling the applicability of a sequence, and (iv) the conditions for compatibility of sequences (lack of dangling edges) and G-congruence (whether two sequences have the same minimal initial graph).This work has been partially sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN)
    • …
    corecore