1,606 research outputs found

    Fuzzy techniques for noise removal in image sequences and interval-valued fuzzy mathematical morphology

    Get PDF
    Image sequences play an important role in today's world. They provide us a lot of information. Videos are for example used for traffic observations, surveillance systems, autonomous navigation and so on. Due to bad acquisition, transmission or recording, the sequences are however usually corrupted by noise, which hampers the functioning of many image processing techniques. A preprocessing module to filter the images often becomes necessary. After an introduction to fuzzy set theory and image processing, in the first main part of the thesis, several fuzzy logic based video filters are proposed: one filter for grayscale video sequences corrupted by additive Gaussian noise and two color extensions of it and two grayscale filters and one color filter for sequences affected by the random valued impulse noise type. In the second main part of the thesis, interval-valued fuzzy mathematical morphology is studied. Mathematical morphology is a theory intended for the analysis of spatial structures that has found application in e.g. edge detection, object recognition, pattern recognition, image segmentation, image magnification… In the thesis, an overview is given of the evolution from binary mathematical morphology over the different grayscale morphology theories to interval-valued fuzzy mathematical morphology and the interval-valued image model. Additionally, the basic properties of the interval-valued fuzzy morphological operators are investigated. Next, also the decomposition of the interval-valued fuzzy morphological operators is investigated. We investigate the relationship between the cut of the result of such operator applied on an interval-valued image and structuring element and the result of the corresponding binary operator applied on the cut of the image and structuring element. These results are first of all interesting because they provide a link between interval-valued fuzzy mathematical morphology and binary mathematical morphology, but such conversion into binary operators also reduces the computation. Finally, also the reverse problem is tackled, i.e., the construction of interval-valued morphological operators from the binary ones. Using the results from a more general study in which the construction of an interval-valued fuzzy set from a nested family of crisp sets is constructed, increasing binary operators (e.g. the binary dilation) are extended to interval-valued fuzzy operators

    Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology

    Get PDF
    Mathematical morphology (MM) offers a wide range of tools for image processing and computer vision. MM was originally conceived for the processing of binary images and later extended to gray-scale morphology. Extensions of classical binary morphology to gray-scale morphology include approaches based on fuzzy set theory that give rise to fuzzy mathematical morphology (FMM). From a mathematical point of view, FMM relies on the fact that the class of all fuzzy sets over a certain universe forms a complete lattice. Recall that complete lattices provide for the most general framework in which MM can be conducted. The concept of L-fuzzy set generalizes not only the concept of fuzzy set but also the concepts of interval-valued fuzzy set and Atanassov’s intuitionistic fuzzy set. In addition, the class of L-fuzzy sets forms a complete lattice whenever the underlying set L constitutes a complete lattice. Based on these observations, we develop a general approach towards L-fuzzy mathematical morphology in this paper. Our focus is in particular on the construction of connectives for interval-valued and intuitionistic fuzzy mathematical morphologies that arise as special, isomorphic cases of L-fuzzy MM. As an application of these ideas, we generate a combination of some well-known medical image reconstruction techniques in terms of interval-valued fuzzy image processing

    Linguistic Interpretation of Mathematical Morphology

    Get PDF
    Mathematical Morphology is a theory based on geometry, algebra, topology and set theory, with strong application to digital image processing. This theory is characterized by two basic operators: dilation and erosion. In this work we redefine these operators based on compensatory fuzzy logic using a linguistic definition, compatible with previous definitions of Fuzzy Mathematical Morphology. A comparison to previous definitions is presented, assessing robustness against noise.Fil: Bouchet, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Meschino, Gustavo. Universidad Nacional de Mar del Plata; ArgentinaFil: Brun, Marcel. Universidad Nacional de Mar del Plata; ArgentinaFil: Espin Andrade, Rafael. Instituto Superior Politécnico José Antonio Echeverría Cujae; CubaFil: Ballarin, Virginia. Universidad Nacional de Mar del Plata; Argentin

    ( max , min )-convolution and Mathematical Morphology

    No full text
    International audienceA formal denition of morphological operators in (max, min)-algebra is introduced and their relevant properties from an algebraic viewpoint are stated. Some previous works in mathematical morphology have already encountered this type of operators but a systematic study of them has not yet been undertaken in the morphological literature. It is shown in particular that one of their fundamental property is the equivalence with level set processing using Minkowski addition and subtraction. Theory of viscosity solutions of the Hamilton-Jacobi equation with Hamiltonians containing u and Du is summarized, in particular, the corresponding Hopf-Lax-Oleinik formulas as (max, min)-operators. Links between (max, min)-convolutions and some previous approaches of unconventional morphology, in particular fuzzy morphology and viscous morphology, are reviewed

    Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets

    Get PDF
    In this paper, we address the hesitant information in enhancement task often caused by differences in image contrast. Enhancement approaches generally use certain filters which generate artifacts or are unable to recover all the objects details in images. Typically, the contrast of an image quantifies a unique ratio between the amounts of black and white through a single pixel. However, contrast is better represented by a group of pix- els. We have proposed a novel image enhancement scheme based on intuitionistic hesi- tant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of target objects. First, a given dronogram is divided into foreground and background areas based on an estimated threshold from which the proposed model measures the amount of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant score indicated by the distance between the two areas for each point in the fuzzy plane. Finally, a hyperbolic operator is adopted for each membership grade to improve the pho- tographic quality leading to enhanced results via defuzzification. The proposed method is tested on a large drone image database. Results demonstrate better contrast enhancement, improved visual quality, and better recognition compared to the state-of-the-art methods.Web of Science500866

    A reinterpretation of set differential equations as differential equations in a Banach space

    Full text link
    Set differential equations are usually formulated in terms of the Hukuhara differential, which implies heavy restrictions for the nature of a solution. We propose to reformulate set differential equations as ordinary differential equations in a Banach space by identifying the convex and compact subsets of Rd\R^d with their support functions. Using this representation, we demonstrate how existence and uniqueness results can be applied to set differential equations. We provide a simple example, which can be treated in support function representation, but not in the Hukuhara setting

    BEMDEC: An Adaptive and Robust Methodology for Digital Image Feature Extraction

    Get PDF
    The intriguing study of feature extraction, and edge detection in particular, has, as a result of the increased use of imagery, drawn even more attention not just from the field of computer science but also from a variety of scientific fields. However, various challenges surrounding the formulation of feature extraction operator, particularly of edges, which is capable of satisfying the necessary properties of low probability of error (i.e., failure of marking true edges), accuracy, and consistent response to a single edge, continue to persist. Moreover, it should be pointed out that most of the work in the area of feature extraction has been focused on improving many of the existing approaches rather than devising or adopting new ones. In the image processing subfield, where the needs constantly change, we must equally change the way we think. In this digital world where the use of images, for variety of purposes, continues to increase, researchers, if they are serious about addressing the aforementioned limitations, must be able to think outside the box and step away from the usual in order to overcome these challenges. In this dissertation, we propose an adaptive and robust, yet simple, digital image features detection methodology using bidimensional empirical mode decomposition (BEMD), a sifting process that decomposes a signal into its two-dimensional (2D) bidimensional intrinsic mode functions (BIMFs). The method is further extended to detect corners and curves, and as such, dubbed as BEMDEC, indicating its ability to detect edges, corners and curves. In addition to the application of BEMD, a unique combination of a flexible envelope estimation algorithm, stopping criteria and boundary adjustment made the realization of this multi-feature detector possible. Further application of two morphological operators of binarization and thinning adds to the quality of the operator

    Type-2 Fuzzy Logic for Edge Detection of Gray Scale Images

    Get PDF
    corecore