692 research outputs found

    Reachability problems for PAMs

    Get PDF
    Piecewise affine maps (PAMs) are frequently used as a reference model to show the openness of the reachability questions in other systems. The reachability problem for one-dimentional PAM is still open even if we define it with only two intervals. As the main contribution of this paper we introduce new techniques for solving reachability problems based on p-adic norms and weights as well as showing decidability for two classes of maps. Then we show the connections between topological properties for PAM's orbits, reachability problems and representation of numbers in a rational base system. Finally we show a particular instance where the uniform distribution of the original orbit may not remain uniform or even dense after making regular shifts and taking a fractional part in that sequence.Comment: 16 page

    Language Emptiness of Continuous-Time Parametric Timed Automata

    Full text link
    Parametric timed automata extend the standard timed automata with the possibility to use parameters in the clock guards. In general, if the parameters are real-valued, the problem of language emptiness of such automata is undecidable even for various restricted subclasses. We thus focus on the case where parameters are assumed to be integer-valued, while the time still remains continuous. On the one hand, we show that the problem remains undecidable for parametric timed automata with three clocks and one parameter. On the other hand, for the case with arbitrary many clocks where only one of these clocks is compared with (an arbitrary number of) parameters, we show that the parametric language emptiness is decidable. The undecidability result tightens the bounds of a previous result which assumed six parameters, while the decidability result extends the existing approaches that deal with discrete-time semantics only. To the best of our knowledge, this is the first positive result in the case of continuous-time and unbounded integer parameters, except for the rather simple case of single-clock automata

    Non-blocking supervisory control for initialised rectangular automata

    Get PDF
    We consider the problem of supervisory control for a class of rectangular automata and more specifically for compact rectangular automata with uniform rectangular activity, i.e. initialised. The supervisory controller is state feedback and disables discrete-event transitions in order to solve the non-blocking forbidden state problem. The non-blocking problem is defined under both strong and weak conditions. For the latter maximally permissive solutions that are computable on a finite quotient space characterised by language equivalence are derived

    Weak Singular Hybrid Automata

    Full text link
    The framework of Hybrid automata, introduced by Alur, Courcourbetis, Henzinger, and Ho, provides a formal modeling and analysis environment to analyze the interaction between the discrete and the continuous parts of cyber-physical systems. Hybrid automata can be considered as generalizations of finite state automata augmented with a finite set of real-valued variables whose dynamics in each state is governed by a system of ordinary differential equations. Moreover, the discrete transitions of hybrid automata are guarded by constraints over the values of these real-valued variables, and enable discontinuous jumps in the evolution of these variables. Singular hybrid automata are a subclass of hybrid automata where dynamics is specified by state-dependent constant vectors. Henzinger, Kopke, Puri, and Varaiya showed that for even very restricted subclasses of singular hybrid automata, the fundamental verification questions, like reachability and schedulability, are undecidable. In this paper we present \emph{weak singular hybrid automata} (WSHA), a previously unexplored subclass of singular hybrid automata, and show the decidability (and the exact complexity) of various verification questions for this class including reachability (NP-Complete) and LTL model-checking (PSPACE-Complete). We further show that extending WSHA with a single unrestricted clock or extending WSHA with unrestricted variable updates lead to undecidability of reachability problem

    Verifying Recursive Active Documents with Positive Data Tree Rewriting

    Get PDF
    This paper proposes a data tree-rewriting framework for modeling evolving documents. The framework is close to Guarded Active XML, a platform used for handling XML repositories evolving through web services. We focus on automatic verification of properties of evolving documents that can contain data from an infinite domain. We establish the boundaries of decidability, and show that verification of a {\em positive} fragment that can handle recursive service calls is decidable. We also consider bounded model-checking in our data tree-rewriting framework and show that it is \nexptime-complete

    On the decidability of linear bounded periodic cyber-physical systems

    Get PDF
    Cyber-Physical Systems (CPSs) are integrations of distributed computing systems with physical processes via a networking with actuators and sensors, where feedback loops among the components allow the physical processes to affect the computations and vice versa. Although CPSs can be found in several complex and sometimes critical real-world domains, their verification and validation often relies on simulation-test systems rather then automatic methodologies to formally verify safety requirements. In this work, we prove the decidability of the reachability problem for discrete-time linear CPSs whose physical process in isolation has a periodic behavior, up to an initial transitory phase

    Polynomial Interrupt Timed Automata

    Full text link
    Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (PolITA). We prove the decidability of the reachability and model checking of a timed version of CTL by an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. Moreover, we show that PolITA are incomparable with stopwatch automata. Finally additional features are introduced while preserving decidability
    • 

    corecore