712,888 research outputs found

    Flip Distance to a Non-crossing Perfect Matching

    Get PDF
    A perfect straight-line matching MM on a finite set PP of points in the plane is a set of segments such that each point in PP is an endpoint of exactly one segment. MM is non-crossing if no two segments in MM cross each other. Given a perfect straight-line matching MM with at least one crossing, we can remove this crossing by a flip operation. The flip operation removes two crossing segments on a point set QQ and adds two non-crossing segments to attain a new perfect matching Mâ€ČM'. It is well known that after a finite number of flips, a non-crossing matching is attained and no further flip is possible. However, prior to this work, no non-trivial upper bound on the number of flips was known. If g(n)g(n) (resp.~k(n)k(n)) is the maximum length of the longest (resp.~shortest) sequence of flips starting from any matching of size nn, we show that g(n)=O(n3)g(n) = O(n^3) and g(n)=Ω(n2)g(n) = \Omega(n^2) (resp.~k(n)=O(n2)k(n) = O(n^2) and k(n)=Ω(n)k(n) = \Omega (n))

    Improving the Pedestrian's Perceptions of Safety on Street Crossings. Psychological and Neurophysiological Effects of Traffic Lanes, Artificial Lighting, and Vegetation

    Full text link
    [EN] The effect that the physical characteristics of urban design have on the pedestrian's perceptions of safety is a fundamental aspect of city planning. This is particularly so with street crossings, where the pedestrian has to make a decision. This paper analyses how pedestrians are affected by number of traffic lanes, lighting colour temperature, and nearby vegetation as they cross roads. Perceptions of safety were quantified by means of the psychological and neurophysiological responses of 60 participants to 16 virtual reality scenarios (4 day and 12 night), based on existing urban design variables. The results showed differences between night-time and daytime scenarios, which suggests that there is a need to analyse both situations. As to the design guidelines, it was observed that safety is improved by reducing the number of traffic lanes and nearby vegetation, and by using a lighting colour temperature of 4500 K. However, the analysis of the variables showed that combined effects produce different results to those obtained from the analysis of individual elements. This result is essential information for urban managers in their assessments of whether particular interventions will improve crossing points.This work was supported by the Direccion General de Trafico-Ministerio del Interior de Espana (Project SPIP2017-02220).Llinares MillĂĄn, MDC.; Higuera-Trujillo, JL.; Montañana, A.; Castilla-Cabanes, N. (2020). Improving the Pedestrian's Perceptions of Safety on Street Crossings. Psychological and Neurophysiological Effects of Traffic Lanes, Artificial Lighting, and Vegetation. International Journal of Environmental research and Public Health (Online). 17(22):1-20. https://doi.org/10.3390/ijerph17228576S1201722Cho, G., RodrĂ­guez, D. A., & Khattak, A. J. (2009). The role of the built environment in explaining relationships between perceived and actual pedestrian and bicyclist safety. Accident Analysis & Prevention, 41(4), 692-702. doi:10.1016/j.aap.2009.03.008Talavera, R., Soria, J. A., & Valenzuela, L. M. (2014). La calidad peatonal como mĂ©todo para evaluar entornos de movilidad urbana. Documents d’AnĂ lisi GeogrĂ fica, 60(1), 161. doi:10.5565/rev/dag.55Bernhoft, I. M., & Carstensen, G. (2008). Preferences and behaviour of pedestrians and cyclists by age and gender. Transportation Research Part F: Traffic Psychology and Behaviour, 11(2), 83-95. doi:10.1016/j.trf.2007.08.004Liu, J. Y. (2014). Fear of falling in robust community-dwelling older people: results of a cross-sectional study. Journal of Clinical Nursing, 24(3-4), 393-405. doi:10.1111/jocn.12613Turner, S., Fitzpatrick, K., Brewer, M., & Park, E. S. (2006). Motorist Yielding to Pedestrians at Unsignalized Intersections. Transportation Research Record: Journal of the Transportation Research Board, 1982(1), 1-12. doi:10.1177/0361198106198200102Landis, B. W., Vattikuti, V. R., Ottenberg, R. M., McLeod, D. S., & Guttenplan, M. (2001). Modeling the Roadside Walking Environment: Pedestrian Level of Service. Transportation Research Record: Journal of the Transportation Research Board, 1773(1), 82-88. doi:10.3141/1773-10Feliciani, C., Gorrini, A., Crociani, L., Vizzari, G., Nishinari, K., & Bandini, S. (2020). Calibration and validation of a simulation model for predicting pedestrian fatalities at unsignalized crosswalks by means of statistical traffic data. Journal of Traffic and Transportation Engineering (English Edition), 7(1), 1-18. doi:10.1016/j.jtte.2019.01.004Karndacharuk, A. (Aut), Wilson, D. J., & Dunn, R. C. M. (2014). Safety Performance Study of Shared Pedestrian and Vehicle Space in New Zealand. Transportation Research Record: Journal of the Transportation Research Board, 2464(1), 1-10. doi:10.3141/2464-01Knight, C. (2010). Field surveys of the effect of lamp spectrum on the perception of safety and comfort at night. Lighting Research & Technology, 42(3), 313-329. doi:10.1177/1477153510376794Fotios, S., Unwin, J., & Farrall, S. (2014). Road lighting and pedestrian reassurance after dark: A review. Lighting Research & Technology, 47(4), 449-469. doi:10.1177/1477153514524587Hidayetoglu, M. L., Yildirim, K., & Akalin, A. (2012). The effects of color and light on indoor wayfinding and the evaluation of the perceived environment. Journal of Environmental Psychology, 32(1), 50-58. doi:10.1016/j.jenvp.2011.09.001Tantanatewin, W., & Inkarojrit, V. (2016). Effects of color and lighting on retail impression and identity. Journal of Environmental Psychology, 46, 197-205. doi:10.1016/j.jenvp.2016.04.015Haans, A., & de Kort, Y. A. W. (2012). Light distribution in dynamic street lighting: Two experimental studies on its effects on perceived safety, prospect, concealment, and escape. Journal of Environmental Psychology, 32(4), 342-352. doi:10.1016/j.jenvp.2012.05.006Suzer, O. K., Olgunturk, N., & Guvenc, D. (2018). The effects of correlated colour temperature on wayfinding: A study in a virtual airport environment. Displays, 51, 9-19. doi:10.1016/j.displa.2018.01.003Bratman, G. N., Hamilton, J. P., Hahn, K. S., Daily, G. C., & Gross, J. J. (2015). Nature experience reduces rumination and subgenual prefrontal cortex activation. Proceedings of the National Academy of Sciences, 112(28), 8567-8572. doi:10.1073/pnas.1510459112Chang, C.-Y., & Chen, P.-K. (2005). Human Response to Window Views and Indoor Plants in the Workplace. HortScience, 40(5), 1354-1359. doi:10.21273/hortsci.40.5.1354Van den Berg, A. E., Hartig, T., & Staats, H. (2007). Preference for Nature in Urbanized Societies: Stress, Restoration, and the Pursuit of Sustainability. Journal of Social Issues, 63(1), 79-96. doi:10.1111/j.1540-4560.2007.00497.xLohr, V. I., & Pearson-Mims, C. H. (2006). Responses to Scenes with Spreading, Rounded, and Conical Tree Forms. Environment and Behavior, 38(5), 667-688. doi:10.1177/0013916506287355FoltĂȘte, J.-C., & Piombini, A. (2007). Urban layout, landscape features and pedestrian usage. Landscape and Urban Planning, 81(3), 225-234. doi:10.1016/j.landurbplan.2006.12.001Smith, A. L. (2009). Contribution of Perceptions in Analysis of Walking Behavior. Transportation Research Record: Journal of the Transportation Research Board, 2140(1), 128-136. doi:10.3141/2140-14GraniĂ©, M.-A., Brenac, T., Montel, M.-C., Millot, M., & Coquelet, C. (2014). Influence of built environment on pedestrian’s crossing decision. Accident Analysis & Prevention, 67, 75-85. doi:10.1016/j.aap.2014.02.008Chu, X., Guttenplan, M., & Baltes, M. R. (2004). Why People Cross Where They Do: The Role of Street Environment. Transportation Research Record: Journal of the Transportation Research Board, 1878(1), 3-10. doi:10.3141/1878-01Dommes, A., & Cavallo, V. (2011). The role of perceptual, cognitive, and motor abilities in street-crossing decisions of young and older pedestrians. Ophthalmic and Physiological Optics, 31(3), 292-301. doi:10.1111/j.1475-1313.2011.00835.xDommes, A., Cavallo, V., Dubuisson, J.-B., Tournier, I., & Vienne, F. (2014). Crossing a two-way street: comparison of young and old pedestrians. Journal of Safety Research, 50, 27-34. doi:10.1016/j.jsr.2014.03.008Lipovac, K., Vujanic, M., Maric, B., & Nesic, M. (2013). Pedestrian Behavior at Signalized Pedestrian Crossings. Journal of Transportation Engineering, 139(2), 165-172. doi:10.1061/(asce)te.1943-5436.0000491Foot, H. C., Thomson, J. A., Tolmie, A. K., Whelan, K. M., Morrison, S., & Sarvary, P. (2006). Children’s understanding of drivers’ intentions. British Journal of Developmental Psychology, 24(4), 681-700. doi:10.1348/026151005x62417Papadimitriou, E., Yannis, G., & Golias, J. (2009). A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour, 12(3), 242-255. doi:10.1016/j.trf.2008.12.004Ewing, R., & Handy, S. (2009). Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. Journal of Urban Design, 14(1), 65-84. doi:10.1080/13574800802451155Ewing, R., Handy, S., Brownson, R. C., Clemente, O., & Winston, E. (2006). Identifying and Measuring Urban Design Qualities Related to Walkability. Journal of Physical Activity and Health, 3(s1), S223-S240. doi:10.1123/jpah.3.s1.s223Kort, Y. A. W. de, IJsselsteijn, W. A., Kooijman, J., & Schuurmans, Y. (2003). Virtual Laboratories: Comparability of Real and Virtual Environments for Environmental Psychology. Presence: Teleoperators and Virtual Environments, 12(4), 360-373. doi:10.1162/105474603322391604Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 73-93. doi:10.1111/j.1460-2466.1992.tb00812.xBakker, I., van der Voordt, T., Vink, P., & de Boon, J. (2014). Pleasure, Arousal, Dominance: Mehrabian and Russell revisited. Current Psychology, 33(3), 405-421. doi:10.1007/s12144-014-9219-4Gifford, R., Hine, D. W., Muller-Clemm, W., Reynolds, D. J., & Shaw, K. T. (2000). Decoding Modern Architecture. Environment and Behavior, 32(2), 163-187. doi:10.1177/00139160021972487Aspinall, P., Mavros, P., Coyne, R., & Roe, J. (2013). The urban brain: analysing outdoor physical activity with mobile EEG. British Journal of Sports Medicine, 49(4), 272-276. doi:10.1136/bjsports-2012-091877Gidlow, C. J., Jones, M. V., Hurst, G., Masterson, D., Clark-Carter, D., Tarvainen, M. P., 
 Nieuwenhuijsen, M. (2016). Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments. Journal of Environmental Psychology, 45, 22-29. doi:10.1016/j.jenvp.2015.11.003Higuera-Trujillo, J. L., Llinares MillĂĄn, C., Montañana i Aviñó, A., & Rojas, J.-C. (2019). Multisensory stress reduction: a neuro-architecture study of paediatric waiting rooms. Building Research & Information, 48(3), 269-285. doi:10.1080/09613218.2019.1612228Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. doi:10.3758/bf03193146Tilley, S., Neale, C., Patuano, A., & Cinderby, S. (2017). Older People’s Experiences of Mobility and Mood in an Urban Environment: A Mixed Methods Approach Using Electroencephalography (EEG) and Interviews. International Journal of Environmental Research and Public Health, 14(2), 151. doi:10.3390/ijerph14020151Slater, M., Usoh, M., & Steed, A. (1994). Depth of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments, 3(2), 130-144. doi:10.1162/pres.1994.3.2.130Knyazev, G. G., Savostyanov, A. N., & Levin, E. A. (2004). Alpha oscillations as a correlate of trait anxiety. International Journal of Psychophysiology, 53(2), 147-160. doi:10.1016/j.ijpsycho.2004.03.001Choi, Y., Kim, M., & Chun, C. (2015). Measurement of occupants’ stress based on electroencephalograms (EEG) in twelve combined environments. Building and Environment, 88, 65-72. doi:10.1016/j.buildenv.2014.10.003Keil, A., MĂŒller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human Gamma Band Activity and Perception of a Gestalt. The Journal of Neuroscience, 19(16), 7152-7161. doi:10.1523/jneurosci.19-16-07152.1999Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009Gudmundsson, S., Runarsson, T. P., Sigurdsson, S., Eiriksdottir, G., & Johnsen, K. (2007). Reliability of quantitative EEG features. Clinical Neurophysiology, 118(10), 2162-2171. doi:10.1016/j.clinph.2007.06.018HyvĂ€rinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4-5), 411-430. doi:10.1016/s0893-6080(00)00026-5Slater, M., & Steed, A. (2000). A Virtual Presence Counter. Presence: Teleoperators and Virtual Environments, 9(5), 413-434. doi:10.1162/105474600566925Fotios, S., & Yao, Q. (2018). The association between correlated colour temperature and scotopic/photopic ratio. Lighting Research & Technology, 51(5), 803-813. doi:10.1177/1477153518779637Loewen, L. J., Steel, G. D., & Suedfeld, P. (1993). Perceived safety from crime in the urban environment. Journal of Environmental Psychology, 13(4), 323-331. doi:10.1016/s0272-4944(05)80254-3Boyce, P. R., Eklund, N. H., Hamilton, B. J., & Bruno, L. D. (2000). Perceptions of safety at night in different lighting conditions. Lighting Research and Technology, 32(2), 79-91. doi:10.1177/096032710003200205Peña-GarcĂ­a, A., Hurtado, A., & Aguilar-LuzĂłn, M. C. (2015). Impact of public lighting on pedestrians’ perception of safety and well-being. Safety Science, 78, 142-148. doi:10.1016/j.ssci.2015.04.009Fitzpatrick, C. D., Harrington, C. P., Knodler, M. A., & Romoser, M. R. E. (2014). The influence of clear zone size and roadside vegetation on driver behavior. Journal of Safety Research, 49, 97.e1-104. doi:10.1016/j.jsr.2014.03.006Kuo, F. E. (2001). Coping with Poverty. Environment and Behavior, 33(1), 5-34. doi:10.1177/00139160121972846Mulckhuyse, M., & Theeuwes, J. (2010). Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychologica, 134(3), 299-309. doi:10.1016/j.actpsy.2010.03.002Fitzpatrick, C. D., Samuel, S., & Knodler, M. A. (2016). Evaluating the effect of vegetation and clear zone width on driver behavior using a driving simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 42, 80-89. doi:10.1016/j.trf.2016.07.002Mok, J.-H., Landphair, H. C., & Naderi, J. R. (2006). Landscape improvement impacts on roadside safety in Texas. Landscape and Urban Planning, 78(3), 263-274. doi:10.1016/j.landurbplan.2005.09.00

    Bridges of biomaterials promote nigrostriatal pathway regeneration

    Full text link
    [EN] Repair of central nervous system (CNS) lesions is difficulted by the lack of ability of central axons to regrow, and the blocking by the brain astrocytes to axonal entry. We hypothesized that by using bridges made of porous biomaterial and permissive olfactory ensheathing glia (OEG), we could provide a scaffold to permit restoration of white matter tracts. We implanted porous polycaprolactone (PCL) bridges between the substantia nigra and the striatum in rats, both with and without OEG. We compared the number of tyrosine-hydroxylase positive (TH+) fibers crossing the striatal-graft interface, and the astrocytic and microglial reaction around the grafts, between animals grafted with and without OEG. Although TH+ fibers were found inside the grafts made of PCL alone, there was a greater fiber density inside the graft and at the striatal-graft interface when OEG was cografted. Also, there was less astrocytic and microglial reaction in those animals. These results show that these PCL grafts are able to promote axonal growth along the nigrostriatal pathway, and that cografting of OEG markedly enhances axonal entry inside the grafts, growth within them, and re-entry of axons into the CNS. These results may have implications in the treatment of diseases such as Parkinson's and others associated with lesions of central white matter tracts.Contract grant sponsor: Regional Government Health Department (Conselleria de Sanitat, Generalitat Valenciana) and Carlos III Health Institute of the Ministry of Health and Consumer Affairs (Spain) (Regenerative Medicine Programme) Contract grant sponsor: Spanish ministry of Education and Science; contract grant number: MAT 2006-13554-C02-02 Contract grant sponsor: Red de Terapia Celular TERCEL (RETICS), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovacion (ISCIII); contract grant number: RD12/0019/0010 (to J.A.) Contract grant sponsor: Spanish Science & Innovation Ministery; contract grant number: MAT2008-06434 (to M.M.P.) Contract grant sponsor: "Convenio de Colaboracion para la Investigacion Basica y Traslacional en Medicina Regenerativa," Instituto Nacional de Salud Carlos III, the Conselleria de Sanidad of the Generalitat Valenciana, and the Foundation Centro de Investigacion Principe FelipeGĂłmez Pinedo, U.; Sanchez-Rojas, L.; Vidueira, S.; Sancho, FJ.; MartĂ­nez-Ramos, C.; Lebourg, M.; MonleĂłn Pradas, M.... (2019). Bridges of biomaterials promote nigrostriatal pathway regeneration. Journal of Biomedical Materials Research Part B Applied Biomaterials. 107(1):190-196. https://doi.org/10.1002/jbm.b.34110S1901961071Pekny, M., Wilhelmsson, U., & Pekna, M. (2014). The dual role of astrocyte activation and reactive gliosis. Neuroscience Letters, 565, 30-38. doi:10.1016/j.neulet.2013.12.071Bliss, T. M., Andres, R. H., & Steinberg, G. K. (2010). Optimizing the success of cell transplantation therapy for stroke. Neurobiology of Disease, 37(2), 275-283. doi:10.1016/j.nbd.2009.10.003Tam, R. Y., Fuehrmann, T., Mitrousis, N., & Shoichet, M. S. (2013). Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach. Neuropsychopharmacology, 39(1), 169-188. doi:10.1038/npp.2013.237Skop, N. B., Calderon, F., Cho, C. H., Gandhi, C. D., & Levison, S. W. (2014). Improvements in biomaterial matrices for neural precursor cell transplantation. Molecular and Cellular Therapies, 2(1), 19. doi:10.1186/2052-8426-2-19Yasuhara, T., Kameda, M., Sasaki, T., Tajiri, N., & Date, I. (2017). Cell Therapy for Parkinson’s Disease. Cell Transplantation, 26(9), 1551-1559. doi:10.1177/0963689717735411Orive, G., Anitua, E., Pedraz, J. L., & Emerich, D. F. (2009). Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience, 10(9), 682-692. doi:10.1038/nrn2685Walker, P. A., Aroom, K. R., Jimenez, F., Shah, S. K., Harting, M. T., Gill, B. S., & Cox, C. S. (2009). Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews and Reports, 5(3), 283-300. doi:10.1007/s12015-009-9081-1Zhong, Y., & Bellamkonda, R. V. (2008). Biomaterials for the central nervous system. Journal of The Royal Society Interface, 5(26), 957-975. doi:10.1098/rsif.2008.0071PĂ©rez‐GarnezM BarciaJA GĂłmez‐PinedoU MonleĂłn‐PradasM VallĂ©s‐LluchA.Materials for Central Nervous System Tissue Engineering Cells and Biomaterials in Regenerative Medicine. InTech;2014. Chap 7.Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R., & Trehan, A. (2004). Poly-Ï”-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics, 278(1), 1-23. doi:10.1016/j.ijpharm.2004.01.044Raisman, G. (2001). Olfactory ensheathing cells — another miracle cure for spinal cord injury? Nature Reviews Neuroscience, 2(5), 369-375. doi:10.1038/35072576Raisman, G., & Li, Y. (2007). Repair of neural pathways by olfactory ensheathing cells. Nature Reviews Neuroscience, 8(4), 312-319. doi:10.1038/nrn2099Fairless, R., & Barnett, S. C. (2005). Olfactory ensheathing cells: their role in central nervous system repair. The International Journal of Biochemistry & Cell Biology, 37(4), 693-699. doi:10.1016/j.biocel.2004.10.010Collins, A., Li, D., Mcmahon, S. B., Raisman, G., & Li, Y. (2017). Transplantation of Cultured Olfactory Bulb Cells Prevents Abnormal Sensory Responses during Recovery from Dorsal Root Avulsion in the Rat. Cell Transplantation, 26(5), 913-924. doi:10.3727/096368917x695353Navarro, X., Valero, A., Gudiïżœo, G., Forïżœs, J., Rodrïżœguez, F. J., Verdïżœ, E., 
 Nieto-Sampedro, M. (1999). Ensheathing glia transplants promote dorsal root regeneration and spinal reflex restitution after multiple lumbar rhizotomy. Annals of Neurology, 45(2), 207-215. doi:10.1002/1531-8249(199902)45:23.0.co;2-kGĂłmez-Pinedo, U., FĂ©lez, M. C., Sancho-Bielsa, F. J., Vidueira, S., Cabanes, C., Soriano, M., 
 Barcia, J. A. (2008). Improved technique for stereotactic placement of nerve grafts between two locations inside the rat brain. Journal of Neuroscience Methods, 174(2), 194-201. doi:10.1016/j.jneumeth.2008.07.008HowardCV ReedMG.Unbiased Stereology: Three‐Dimensional Measurement in Microscopy. Oxford: Bioimaging Group;1998.Collier, T. J., & Springer, J. E. (1991). Co-grafts of embryonic dopamine neurons and adult sciatic nerve into the denervated striatum enhance behavioral and morphological recovery in rats. Experimental Neurology, 114(3), 343-350. doi:10.1016/0014-4886(91)90160-eBourke, J. L., Coleman, H. A., Pham, V., Forsythe, J. S., & Parkington, H. C. (2014). Neuronal Electrophysiological Function and Control of Neurite Outgrowth on Electrospun Polymer Nanofibers Are Cell Type Dependent. Tissue Engineering Part A, 20(5-6), 1089-1095. doi:10.1089/ten.tea.2013.0295Nga, V. D. W., Lim, J., Choy, D. K. S., Nyein, M. A., Lu, J., Chou, N., 
 Teoh, S.-H. (2015). Effects of Polycaprolactone-Based Scaffolds on the Blood–Brain Barrier and Cerebral Inflammation. Tissue Engineering Part A, 21(3-4), 647-653. doi:10.1089/ten.tea.2013.0779PĂ©rez-GarnĂ©s, M., MartĂ­nez-Ramos, C., Barcia, J. A., Escobar Ivirico, J. L., GĂłmez-Pinedo, U., VallĂ©s-Lluch, A., & MonleĂłn Pradas, M. (2012). One-Dimensional Migration of Olfactory Ensheathing Cells on Synthetic Materials: Experimental and Numerical Characterization. Cell Biochemistry and Biophysics, 65(1), 21-36. doi:10.1007/s12013-012-9399-1Diban, N., Ramos-Vivas, J., Remuzgo-Martinez, S., Ortiz, I., & Urtiaga, A. (2015). Poly(ε-caprolactone) Films with Favourable Properties for Neural Cell Growth. Current Topics in Medicinal Chemistry, 14(23), 2743-2749. doi:10.2174/156802661466614121515393

    Talent Goes Social: Online Corporate Networking and Business Performance

    Full text link
    [EN] This study examines the effect of online social talent on business performance. The paper uses data from a selected sample of 296 companies from the S&P 500 list with active corporate profiles on LinkedIn. The empirical design consists of non-linear techniques to test the hypothesis that financial performance (i.e., revenue) and online social talent (i.e., employee online profile and skills) have a positive and non-linear relationship. The findings show that internal online social talent measured by employees' online profiles, and their skills are positively associated with companies' financial performance. The study provides insights into talent management in the digital age and elucidates the role of online corporate social networking in business performance.This research was funded by MICINN (Spanish Government), grant number RTI2018-100899-B-I00 and Generalitat Valenciana, grant number GV/2020/012.Paniagua, J.; Peris-Ortiz, M.; Korzynski, P. (2020). Talent Goes Social: Online Corporate Networking and Business Performance. Sustainability. 12(20):1-13. https://doi.org/10.3390/su12208660S1131220Worldwide Digital Population as of JULY 2020https://www.statista.com/statistics/617136/digital-population-worldwide/Korzynski, P., Rook, C., Florent Treacy, E., & Kets de Vries, M. (2020). The impact of self-esteem, conscientiousness and pseudo-personality on technostress. Internet Research, 31(1), 59-79. doi:10.1108/intr-03-2020-0141DiPrete, T. A. (1987). Horizontal and Vertical Mobility in Organizations. Administrative Science Quarterly, 32(3), 422. doi:10.2307/2392913Stewman, S., & Konda, S. L. (1983). Careers and Organizational Labor Markets: Demographic Models of Organizational Behavior. American Journal of Sociology, 88(4), 637-685. doi:10.1086/227728Korzynski, P. (2014). How does online social networking help leaders communicate? evidence from the Fortune 500. Asia Pacific Journal of Human Resources, 52(4), 460-475. doi:10.1111/1744-7941.12041Barden, J. Q., & Mitchell, W. (2007). Disentangling the Influences of Leaders’ Relational Embeddedness on Interorganizational Exchange. Academy of Management Journal, 50(6), 1440-1461. doi:10.5465/amj.2007.28225983Farley, C. (2005). HR’s role in talent management and driving business results. Employment Relations Today, 32(1), 55-61. doi:10.1002/ert.20053Barney, J. B., & Wright, P. M. (1998). On becoming a strategic partner: The role of human resources in gaining competitive advantage. Human Resource Management, 37(1), 31-46. doi:10.1002/(sici)1099-050x(199821)37:13.0.co;2-wRao, H., & Drazin, R. (2002). Overcoming Resource Constraints on Product Innovation by Recruiting Talent From Rivals: A Study of the Mutual Fund Industry, 1986–1994. Academy of Management Journal, 45(3), 491-507. doi:10.5465/3069377Story, J. S., & Castanheira, F. (2013). The Impact of CSR Practices on Organizational Attractiveness: HRM Implications. Academy of Management Proceedings, 2013(1), 14342. doi:10.5465/ambpp.2013.14342abstractKnudsen, E. S., & Lien, L. B. (2013). Investments in Recessions. Academy of Management Proceedings, 2013(1), 17057. doi:10.5465/ambpp.2013.17057abstractTarique, I., & Schuler, R. S. (2010). Global talent management: Literature review, integrative framework, and suggestions for further research. Journal of World Business, 45(2), 122-133. doi:10.1016/j.jwb.2009.09.019Cappelli, P., Singh, H., Singh, J., & Useem, M. (2010). The India Way: Lessons for the U.S. Academy of Management Perspectives, 24(2), 6-24. doi:10.5465/amp.24.2.6CHOI, H., & VARIAN, H. (2012). Predicting the Present with Google Trends. Economic Record, 88, 2-9. doi:10.1111/j.1475-4932.2012.00809.xEttredge, M., Gerdes, J., & Karuga, G. (2005). Using web-based search data to predict macroeconomic statistics. Communications of the ACM, 48(11), 87-92. doi:10.1145/1096000.1096010Paniagua, J., & Sapena, J. (2014). Business performance and social media: Love or hate? Business Horizons, 57(6), 719-728. doi:10.1016/j.bushor.2014.07.005Korzynski, P., & Paniagua, J. (2016). Score a tweet and post a goal: Social media recipes for sports stars. Business Horizons, 59(2), 185-192. doi:10.1016/j.bushor.2015.11.002Korzynski, P., Paniagua, J., & Rodriguez-Montemayor, E. (2019). Employee creativity in a digital era: the mediating role of social media. Management Decision, 58(6), 1100-1117. doi:10.1108/md-05-2018-0586Paniagua, Rivelles, & Sapena. (2019). Social Determinants of Success: Social Media, Corporate Governance and Revenue. Sustainability, 11(19), 5164. doi:10.3390/su11195164Al Ariss, A., Cascio, W. F., & Paauwe, J. (2014). Talent management: Current theories and future research directions. Journal of World Business, 49(2), 173-179. doi:10.1016/j.jwb.2013.11.001Collings, D. G., & Mellahi, K. (2013). Commentary on: «Talent—innate or acquired? Theoretical considerations and their implications for talent management». Human Resource Management Review, 23(4), 322-325. doi:10.1016/j.hrmr.2013.08.003Kehinde, J. (2012). Talent Management: Effect on Organization Performances. Journal of Management Research, 4(2). doi:10.5296/jmr.v4i2.937Vaiman, V., & Collings, D. G. (2013). Talent management: advancing the field. The International Journal of Human Resource Management, 24(9), 1737-1743. doi:10.1080/09585192.2013.777544Collings, D. G., & Mellahi, K. (2009). Strategic talent management: A review and research agenda. Human Resource Management Review, 19(4), 304-313. doi:10.1016/j.hrmr.2009.04.001Korzynski, P., Mazurek, G., & Haenlein, M. (2020). Leveraging employees as spokespeople in your HR strategy: How company-related employee posts on social media can help firms to attract new talent. European Management Journal, 38(1), 204-212. doi:10.1016/j.emj.2019.08.003Kietzmann, J. H., Hermkens, K., McCarthy, I. P., & Silvestre, B. S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business Horizons, 54(3), 241-251. doi:10.1016/j.bushor.2011.01.005O’Connor, P. (2010). Managing a Hotel’s Image on TripAdvisor. Journal of Hospitality Marketing & Management, 19(7), 754-772. doi:10.1080/19368623.2010.508007Fieseler, C., Fleck, M., & Meckel, M. (2009). Corporate Social Responsibility in the Blogosphere. Journal of Business Ethics, 91(4), 599-614. doi:10.1007/s10551-009-0135-8Rapp, A., Trainor, K. J., & Agnihotri, R. (2010). Performance implications of customer-linking capabilities: Examining the complementary role of customer orientation and CRM technology. Journal of Business Research, 63(11), 1229-1236. doi:10.1016/j.jbusres.2009.11.002Trainor, K. J., Andzulis, J. (Mick), Rapp, A., & Agnihotri, R. (2014). Social media technology usage and customer relationship performance: A capabilities-based examination of social CRM. Journal of Business Research, 67(6), 1201-1208. doi:10.1016/j.jbusres.2013.05.002De Vries, L., Gensler, S., & Leeflang, P. S. H. (2012). Popularity of Brand Posts on Brand Fan Pages: An Investigation of the Effects of Social Media Marketing. Journal of Interactive Marketing, 26(2), 83-91. doi:10.1016/j.intmar.2012.01.003Follower Numbers on Twitter Do Matter (Just Not In The Way That You Think)http://www.mediabistro.com/alltwitter/followers_b25105Paniagua, J., Korzynski, P., & Mas-Tur, A. (2017). Crossing borders with social media: Online social networks and FDI. European Management Journal, 35(3), 314-326. doi:10.1016/j.emj.2016.09.002Prpić, J., Shukla, P. P., Kietzmann, J. H., & McCarthy, I. P. (2015). How to work a crowd: Developing crowd capital through crowdsourcing. Business Horizons, 58(1), 77-85. doi:10.1016/j.bushor.2014.09.005Ahuja, G. (2000). The duality of collaboration: inducements and opportunities in the formation of interfirm linkages. Strategic Management Journal, 21(3), 317-343. doi:10.1002/(sici)1097-0266(200003)21:33.0.co;2-bHarris, L., & Rae, A. (2011). Building a personal brand through social networking. Journal of Business Strategy, 32(5), 14-21. doi:10.1108/02756661111165435Ollier-Malaterre, A., Rothbard, N. P., & Berg, J. M. (2013). When Worlds Collide in Cyberspace: How Boundary Work in Online Social Networks Impacts Professional Relationships. Academy of Management Review, 38(4), 645-669. doi:10.5465/amr.2011.0235Keenan, A., & Shiri, A. (2009). Sociability and social interaction on social networking websites. Library Review, 58(6), 438-450. doi:10.1108/00242530910969794Hanna, R., Rohm, A., & Crittenden, V. L. (2011). We’re all connected: The power of the social media ecosystem. Business Horizons, 54(3), 265-273. doi:10.1016/j.bushor.2011.01.007Subramani, M. R., & Rajagopalan, B. (2003). Knowledge-sharing and influence in online social networks via viral marketing. Communications of the ACM, 46(12), 300-307. doi:10.1145/953460.953514Carmeli, A., & Tishler, A. (2004). The relationships between intangible organizational elements and organizational performance. Strategic Management Journal, 25(13), 1257-1278. doi:10.1002/smj.428Roberts, P. W., & Dowling, G. R. (2002). Corporate reputation and sustained superior financial performance. Strategic Management Journal, 23(12), 1077-1093. doi:10.1002/smj.274Roberson, Q. M., & Williamson, I. O. (2012). Justice in Self-Managing Teams: The Role of Social Networks in the Emergence of Procedural Justice Climates. Academy of Management Journal, 55(3), 685-701. doi:10.5465/amj.2009.0491Fountain, C. (2005). Finding a Job in the Internet Age. Social Forces, 83(3), 1235-1262. doi:10.1353/sof.2005.0030Corkindale, D., & Newall, J. (1978). Advertising Thresholds and Wearout. European Journal of Marketing, 12(5), 329-378. doi:10.1108/eum0000000004971Marwell, G., Oliver, P. E., & Prahl, R. (1988). Social Networks and Collective Action: A Theory of the Critical Mass. III. American Journal of Sociology, 94(3), 502-534. doi:10.1086/229028Lin, K.-Y., & Lu, H.-P. (2011). Why people use social networking sites: An empirical study integrating network externalities and motivation theory. Computers in Human Behavior, 27(3), 1152-1161. doi:10.1016/j.chb.2010.12.009Venkatraman, N., & Ramanujam, V. (1986). Measurement of Business Performance in Strategy Research: A Comparison of Approaches. Academy of Management Review, 11(4), 801-814. doi:10.5465/amr.1986.4283976Spector, P. E. (2019). Do Not Cross Me: Optimizing the Use of Cross-Sectional Designs. Journal of Business and Psychology, 34(2), 125-137. doi:10.1007/s10869-018-09613-8McCann, M., & Barlow, A. (2015). Use and measurement of social media for SMEs. Journal of Small Business and Enterprise Development, 22(2), 273-287. doi:10.1108/jsbed-08-2012-0096Odoom, R., Anning-Dorson, T., & Acheampong, G. (2017). Antecedents of social media usage and performance benefits in small- and medium-sized enterprises (SMEs). Journal of Enterprise Information Management, 30(3), 383-399. doi:10.1108/jeim-04-2016-0088Dufrenot, G., Mignon, V., & Tsangarides, C. (2010). The trade-growth nexus in the developing countries: a quantile regression approach. Review of World Economics, 146(4), 731-761. doi:10.1007/s10290-010-0067-5Paniagua, J., Figueiredo, E., & Sapena, J. (2015). Quantile regression for the FDI gravity equation. Journal of Business Research, 68(7), 1512-1518. doi:10.1016/j.jbusres.2015.01.043Huarng, K.-H., & Yu, T. H.-K. (2014). A new quantile regression forecasting model. Journal of Business Research, 67(5), 779-784. doi:10.1016/j.jbusres.2013.11.044Bhattacharya, M., Gibson, D. E., & Doty, D. H. (2005). The Effects of Flexibility in Employee Skills, Employee Behaviors, and Human Resource Practices on Firm Performance. Journal of Management, 31(4), 622-640. doi:10.1177/0149206304272347Yates, D., & Paquette, S. (2011). Emergency knowledge management and social media technologies: A case study of the 2010 Haitian earthquake. International Journal of Information Management, 31(1), 6-13. doi:10.1016/j.ijinfomgt.2010.10.00

    Photosensitised pyrimidine dimerisation in DNA

    Full text link
    Triplet-mediated pyrimidine (Pyr) dimerisation is a key process in photochemical damage to DNA. It may occur in the presence of a photosensitiser, provided that a number of requirements are fulfilled, such as favourable intersystem crossing quantum yield and high triplet energy. The attention has been mainly focused on cyclobutane pyrimidine dimers, as they are by far the most relevant Pyr photoproducts obtained by sensitisation. The present perspective deals with the involved chemistry, not only in DNA but also in its simple building blocks. It also includes the photophysical characterisation of the Pyr triplet excited states, as well as a brief discussion of the theoretical aspects.Financial support from the Spanish Government (CTQ2009-13699, CTQ2009-14196, JAE Doc fellowship for M. C. C. and Ramon y Cajal contract for V. L.-V.) and EU (CM0603) is gratefully acknowledged.Bosca Mayans, F.; Lhiaubet, VL.; Cuquerella Alabort, MC.; Miranda Alonso, MÁ. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science. 2(7):1219-1232. https://doi.org/10.1039/c1sc00088h1219123227The Lancet Oncology. (2009). Beauty and the beast. The Lancet Oncology, 10(9), 835. doi:10.1016/s1470-2045(09)70243-8Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765-13770. doi:10.1073/pnas.0604213103Setlow, R. B., Grist, E., Thompson, K., & Woodhead, A. D. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences, 90(14), 6666-6670. doi:10.1073/pnas.90.14.6666Rochette, P. J. (2003). UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Research, 31(11), 2786-2794. doi:10.1093/nar/gkg402Mitchell, D. L., Fernandez, A. A., Nairn, R. S., Garcia, R., Paniker, L., Trono, D., 
 Gimenez-Conti, I. (2010). Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model. Proceedings of the National Academy of Sciences, 107(20), 9329-9334. doi:10.1073/pnas.1000324107Douki, T., Reynaud-Angelin, A., Cadet, J., & Sage, E. (2003). Bipyrimidine Photoproducts Rather than Oxidative Lesions Are the Main Type of DNA Damage Involved in the Genotoxic Effect of Solar UVA Radiation†. Biochemistry, 42(30), 9221-9226. doi:10.1021/bi034593cYoung, A. R., Potten, C. S., Nikaido, O., Parsons, P. G., Boenders, J., Ramsden, J. M., & Chadwick, C. A. (1998). Human Melanocytes and Keratinocytes Exposed to UVB or UVA In Vivo Show Comparable Levels of Thymine Dimers. Journal of Investigative Dermatology, 111(6), 936-940. doi:10.1046/j.1523-1747.1998.00435.xCooke, M. S., Evans, M. D., Patel, K., Barnard, A., Lunec, J., Burd, R. M., & Hutchinson, P. E. (2001). Induction and Excretion of Ultraviolet-Induced 8-Oxo-2â€Č-deoxyguanosine and Thymine Dimers In Vivo: Implications for PUVA. Journal of Investigative Dermatology, 116(2), 281-285. doi:10.1046/j.1523-1747.2001.01251.xMouret, S., Philippe, C., Gracia-Chantegrel, J., Banyasz, A., Karpati, S., Markovitsi, D., & Douki, T. (2010). UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism? Organic & Biomolecular Chemistry, 8(7), 1706. doi:10.1039/b924712bJiang, Y., Rabbi, M., Kim, M., Ke, C., Lee, W., Clark, R. L., 
 Marszalek, P. E. (2009). UVA Generates Pyrimidine Dimers in DNA Directly. Biophysical Journal, 96(3), 1151-1158. doi:10.1016/j.bpj.2008.10.030Tyrrell, R. M., & Keyse, S. M. (1990). New trends in photobiology the interaction of UVA radiation with cultured cells. Journal of Photochemistry and Photobiology B: Biology, 4(4), 349-361. doi:10.1016/1011-1344(90)85014-nBesaratinia, A., Synold, T. W., Chen, H.-H., Chang, C., Xi, B., Riggs, A. D., & Pfeifer, G. P. (2005). DNA lesions induced by UV A1 and B radiation in human cells: Comparative analyses in the overall genome and in the p53 tumor suppressor gene. Proceedings of the National Academy of Sciences, 102(29), 10058-10063. doi:10.1073/pnas.0502311102Kuluncsics, Z., Perdiz, D., Brulay, E., Muel, B., & Sage, E. (1999). Wavelength dependence of ultraviolet-induced DNA damage distribution: Involvement of direct or indirect mechanisms and possible artefacts. Journal of Photochemistry and Photobiology B: Biology, 49(1), 71-80. doi:10.1016/s1011-1344(99)00034-2Cadet, J., Courdavault, S., Ravanat, J.-L., & Douki, T. (2005). UVB and UVA radiation-mediated damage to isolated and cellular DNA. Pure and Applied Chemistry, 77(6), 947-961. doi:10.1351/pac200577060947Costalat, R., Blais, J., Ballini, J.-P., Moysan, A., Cadet, J., Chalvet, O., & Vigny, P. (1990). FORMATION OF CYCLOBUTANE THYMINE DIMERS PHOTOSENSITIZED BY PYRIDOPSORALENS: A TRIPLET-TRIPLET ENERGY TRANSFER MECHANISM. Photochemistry and Photobiology, 51(3), 255-262. doi:10.1111/j.1751-1097.1990.tb01709.xMoysan, A., Viari, A., Vigny, P., Voituriez, L., Cadet, J., Moustacchi, E., & Sage, E. (1991). Formation of cyclobutane thymine dimers photosensitized by pyridopsoralens: quantitative and qualitative distribution within DNA. Biochemistry, 30(29), 7080-7088. doi:10.1021/bi00243a007Stern, R. S., Liebman, E. J., & VĂ€kevĂ€, L. (1998). Oral Psoralen and Ultraviolet-A Light (PUVA) Treatment of Psoriasis and Persistent Risk of Nonmelanoma Skin Cancer. JNCI: Journal of the National Cancer Institute, 90(17), 1278-1284. doi:10.1093/jnci/90.17.1278Young, A. R. (1990). Photocarcinogenicity of psoralens used in PUVA treatment: Present status in mouse and man. Journal of Photochemistry and Photobiology B: Biology, 6(1-2), 237-247. doi:10.1016/1011-1344(90)85093-cSpratt, T. E., Schultz, S. S., Levy, D. E., Chen, D., SchlĂŒter, G., & Williams, G. M. (1999). Different Mechanisms for the Photoinduced Production of Oxidative DNA Damage by Fluoroquinolones Differing in Photostability. Chemical Research in Toxicology, 12(9), 809-815. doi:10.1021/tx980224jSauvaigo, S., Douki, T., Odin, F., Caillat, S., Ravanat, J.-L., & Cadet, J. (2001). Analysis of Fluoroquinolone-mediated Photosensitization of 2â€Č-Deoxyguanosine, Calf Thymus and Cellular DNA: Determination of Type-I, Type-II and Triplet–Triplet Energy Transfer Mechanism Contribution¶. Photochemistry and Photobiology, 73(3), 230. doi:10.1562/0031-8655(2001)0732.0.co;2Cuquerella, M. C., BoscĂĄ, F., Miranda, M. A., Belvedere, A., Catalfo, A., & de Guidi, G. (2003). Photochemical Properties of Ofloxacin Involved in Oxidative DNA Damage:  A Comparison with Rufloxacin. Chemical Research in Toxicology, 16(4), 562-570. doi:10.1021/tx034006oLhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.xMĂ€kinen, M., Forbes, P. D., & StenbĂ€ck, F. (1997). Quinolone antibacterials: A new class of photochemical carcinogens. Journal of Photochemistry and Photobiology B: Biology, 37(3), 182-187. doi:10.1016/s1011-1344(96)07425-8Klecak, G., Urbach, F., & Urwyler, H. (1997). Fluoroquinolone antibacterials enhance UVA-induced skin tumors. Journal of Photochemistry and Photobiology B: Biology, 37(3), 174-181. doi:10.1016/s1011-1344(96)07424-6Johnson, B. E., Gibbs, N. K., & Ferguson, J. (1997). Quinolone antibiotic with potential to photosensitize skin tumorigenesis. Journal of Photochemistry and Photobiology B: Biology, 37(3), 171-173. doi:10.1016/s1011-1344(96)07423-4Itoh, T., Miyauchi-Hashimoto, H., Sugihara, A., Tanaka, K., & Horio, T. (2005). The Photocarcinogenesis of Antibiotic Lomefloxacin and UVA Radiation Is Enhanced in Xeroderma Pigmentosum Group A Gene-Deficient Mice. Journal of Investigative Dermatology, 125(3), 554-559. doi:10.1111/j.0022-202x.2005.23862.xSandros, K., Haglid, F., Ryhage, R., Ryhage, R., & Stevens, R. (1964). Transfer of Triplet State Energy in Fluid Solutions. III. Reversible Energy Transfer. Acta Chemica Scandinavica, 18, 2355-2374. doi:10.3891/acta.chem.scand.18-2355Encinas, S., Belmadoui, N., Climent, M. J., Gil, S., & Miranda, M. A. (2004). Photosensitization of Thymine Nucleobase by Benzophenone Derivatives as Models for Photoinduced DNA Damage:  Paterno−BĂŒchi vs Energy and Electron Transfer Processes. Chemical Research in Toxicology, 17(7), 857-862. doi:10.1021/tx034249gMorrison, H., & Kleopfer, R. (1968). Organic photochemistry. VIII. Solvent effects on liquid-phase photodimerization of dimethylthymine. Journal of the American Chemical Society, 90(18), 5037-5038. doi:10.1021/ja01020a055Wagner, P. J., & Bucheck, D. J. (1970). Photodimerization of thymine and uracil in acetonitrile. Journal of the American Chemical Society, 92(1), 181-185. doi:10.1021/ja00704a030Cadet, J., Voituriez, L., Hruska, F. E., Kan, L.-S., Leeuw, F. A. A. M. de, & Altona, C. (1985). Characterization of thymidine ultraviolet photoproducts. Cyclobutane dimers and 5,6-dihydrothymidines. Canadian Journal of Chemistry, 63(11), 2861-2868. doi:10.1139/v85-477VARGHESE, A. J. (1972). ACETONE-SENSITIZED DIMERIZATION OF CYTOSINE DERIVATIVES. Photochemistry and Photobiology, 15(2), 113-118. doi:10.1111/j.1751-1097.1972.tb06232.xLAMOLA, A. A. (1968). EXCITED STATE PRECURSORS OF THYMINE PHOTODIMERS. Photochemistry and Photobiology, 7(6), 619-632. doi:10.1111/j.1751-1097.1968.tb08044.xGreenstock, C. L., & Johns, H. E. (1968). Photosensitized dimerization of pyrimidines. Biochemical and Biophysical Research Communications, 30(1), 21-27. doi:10.1016/0006-291x(68)90706-7Aliwell, S. R., Martincigh, B. S., & Salter, L. F. (1993). Para-aminobenzoic acid-photosensitized dimerization of thymine I. In DNA-related model systems. Journal of Photochemistry and Photobiology A: Chemistry, 71(2), 137-146. doi:10.1016/1010-6030(93)85065-gKleopfer, R., & Morrison, H. (1972). Organic photochemistry. XVII. Solution-phase photodimerization of dimethylthymine. Journal of the American Chemical Society, 94(1), 255-264. doi:10.1021/ja00756a045Chouini-Lalanne, N., Defais, M., & Paillous, N. (1998). Nonsteroidal antiinflammatory drug-photosensitized formation of pyrimidine dimer in DNA. Biochemical Pharmacology, 55(4), 441-446. doi:10.1016/s0006-2952(97)00511-xMeistrich, M. L., & Lamola, A. A. (1972). Triplet-state sensitization of thymine photodimerization in bacteriophage T4. Journal of Molecular Biology, 66(1), 83-95. doi:10.1016/s0022-2836(72)80007-xLamola, A. A., GuĂ©ron, M., Yamane, T., Eisinger, J., & Shulman, R. G. (1967). Triplet State of DNA. The Journal of Chemical Physics, 47(7), 2210-2217. doi:10.1063/1.1703293HĂžNNÅS, P. I., & STEEN, H. B. (1970). X-RAY- AND U.V.-INDUCED EXCITATION OF ADENINE, THYMINE AND THE RELATED NUCLEOSIDES AND NUCLEOTIDES IN SOLUTION AT 77°K. Photochemistry and Photobiology, 11(2), 67-76. doi:10.1111/j.1751-1097.1970.tb05972.xWilucki, I. vo., MatthĂ€s, H., & Krauch, C. H. (1967). PHOTOSENSIBILISIERTE CYCLODIMERISATION VON THYMIN IN LÖSUNG. Photochemistry and Photobiology, 6(7), 497-500. doi:10.1111/j.1751-1097.1967.tb08750.xElad, D., KrĂŒger, C., & Schmidt, G. M. J. (1967). THE PHOTOSENSITIZED SOLUTION DIMERIZATTION OF DIMETHYLURACIL AND DIMETHYLTHYMINE. FOUR PHOTODIMERS OF DIMETHYLURACIL. Photochemistry and Photobiology, 6(7), 495-496. doi:10.1111/j.1751-1097.1967.tb08749.xJENNINGS, B. H., PASTRA, S.-C., & WELLINGTON, J. L. (1970). PHOTOSENSITIZED DIMERIZATION OF THYMINE. Photochemistry and Photobiology, 11(4), 215-226. doi:10.1111/j.1751-1097.1970.tb05991.xBen-Hur, E., Elad, D., & Ben-Ishai, R. (1967). The photosensitized dimerization of thymidine in solution. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 149(2), 355-360. doi:10.1016/0005-2787(67)90163-3Delatour, T., Douki, T., D’Ham, C., & Cadet, J. (1998). Photosensitization of thymine nucleobase by benzophenone through energy transfer, hydrogen abstraction and one-electron oxidation. Journal of Photochemistry and Photobiology B: Biology, 44(3), 191-198. doi:10.1016/s1011-1344(98)00142-0Douki, T., Court, M., & Cadet, J. (2000). Electrospray–mass spectrometry characterization and measurement of far-UV-induced thymine photoproducts. Journal of Photochemistry and Photobiology B: Biology, 54(2-3), 145-154. doi:10.1016/s1011-1344(00)00009-9Belmadoui, N., Encinas, S., Climent, M. J., Gil, S., & Miranda, M. A. (2006). Intramolecular Interactions in the Triplet Excited States of Benzophenone–Thymine Dyads. Chemistry - A European Journal, 12(2), 553-561. doi:10.1002/chem.200500345Prakash, G., & Falvey, D. E. (1995). Model studies of the (6-4) photoproduct DNA photolyase: Synthesis and photosensitized splitting of a thymine-5,6-oxetane. Journal of the American Chemical Society, 117(45), 11375-11376. doi:10.1021/ja00150a050Nakatani, K., Yoshida, T., & Saito, I. (2002). Photochemistry of Benzophenone Immobilized in a Major Groove of DNA:  Formation of Thermally Reversible Interstrand Cross-link. Journal of the American Chemical Society, 124(10), 2118-2119. doi:10.1021/ja017611rVarghese, A. J. (1975). PHOTOCYCLOADDITION OF ACETONE TO URACIL AND CYTOSINE. Photochemistry and Photobiology, 21(3), 147-151. doi:10.1111/j.1751-1097.1975.tb06644.xTrzcionka, J., Lhiaubet-Vallet, V., Paris, C., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2007). Model Studies on a Carprofen Derivative as Dual Photosensitizer for Thymine Dimerization and (6–4) Photoproduct Repair. ChemBioChem, 8(4), 402-407. doi:10.1002/cbic.200600394Lhiaubet-Vallet, V., Encinas, S., & Miranda, M. A. (2005). Excited State Enantiodifferentiating Interactions between a Chiral Benzophenone Derivative and Nucleosides. Journal of the American Chemical Society, 127(37), 12774-12775. doi:10.1021/ja053518hUmlas, M. E., Franklin, W. A., Chan, G. L., & Haseltine, W. A. (1985). ULTRAVIOLET LIGHT IRRADIATION OF DEFINED-SEQUENCE DNA UNDER CONDITIONS OF CHEMICAL PHOTOSENSITIZATION. Photochemistry and Photobiology, 42(3), 265-273. doi:10.1111/j.1751-1097.1985.tb08941.xLiu, F.-T., & Yang, N. C. (1978). Photochemistry of cytosine derivatives. 1. Photochemistry of thymidylyl-(3’ →5’)-deoxycytidine. Biochemistry, 17(23), 4865-4876. doi:10.1021/bi00616a003Mu, W., Han, Q., Luo, Z., & Wang, Y. (2006). Production of cis–syn thymine–thymine cyclobutane dimer oligonucleotide in the presence of acetone photosensitizer. Analytical Biochemistry, 353(1), 117-123. doi:10.1016/j.ab.2006.03.007Kaneko, M., Matsuyama, A., & Nagata, C. (1979). Photosensitized formation of thymine dimers in DNA by tyramine, tyrosine and tyrosine containing peptides. Nucleic Acids Research, 6(3), 1177-1187. doi:10.1093/nar/6.3.1177Logue, M. W., & Leonard, N. J. (1972). Synthetic spectroscopic models related to coenzymes and base pairs. IX. «Abbreviated» dinucleosides of thymidine and deoxyuridine and their photoproducts. Journal of the American Chemical Society, 94(8), 2842-2846. doi:10.1021/ja00763a050KONING, T. M. G., SOEST, J. J. G., & KAPTEIN, R. (1991). NMR studies of bipyrimidine cyclobutane photodimers. European Journal of Biochemistry, 195(1), 29-40. doi:10.1111/j.1432-1033.1991.tb15672.xLeonard, N. J., McCredie, R. S., Logue, M. W., & Cundall, R. L. (1973). Synthetic spectroscopic models related to coenzymes and base pairs. XI. Solid state ultraviolet irradiation of 1,1’-trimethylenebisthymine and photosensitized irradiation of 1,1’-polymethylenebisthymines. Journal of the American Chemical Society, 95(7), 2320-2324. doi:10.1021/ja00788a036Rahn, R. O., & Landry, L. C. (1971). Pyrimidine dimer formation in poly (d-dT) and apurinic acid. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 247(2), 197-206. doi:10.1016/0005-2787(71)90670-8Hosszu, J. L., & Rahn, R. O. (1967). Thymine dimer formation in DNA between 25°C and 100°C. Biochemical and Biophysical Research Communications, 29(3), 327-330. doi:10.1016/0006-291x(67)90457-3Setlow, R. B., & Carrier, W. L. (1966). Pyrimidine dimers in ultraviolet-irradiated DNA’s. Journal of Molecular Biology, 17(1), 237-254. doi:10.1016/s0022-2836(66)80105-5Lhiaubet, V., Paillous, N., & Chouini-Lalanne, N. (2001). Comparison of DNA Damage Photoinduced by Ketoprofen, Fenofibric Acid and Benzophenone via Electron and Energy Transfer¶. Photochemistry and Photobiology, 74(5), 670. doi:10.1562/0031-8655(2001)0742.0.co;2Lhiaubet-Vallet, V., Trzcionka, J., Encinas, S., Miranda, M. A., & Chouini-Lalanne, N. (2004). The Triplet State of aN-Phenylphthalimidine with High Intersystem Crossing Efficiency:  Characterization by Transient Absorption Spectroscopy and DNA Sensitization Properties. The Journal of Physical Chemistry B, 108(37), 14148-14153. doi:10.1021/jp0498926Trzcionka, J., Lhiaubet-Vallet, V., & Chouini-Lalanne, N. (2004). DNA photosensitization by indoprofen ? is DNA damage photoinduced by indoprofen or by its photoproducts? Photochemical & Photobiological Sciences, 3(2), 226. doi:10.1039/b307719eBosca, F., Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., & Miranda, M. A. (2006). The Triplet Energy of Thymine in DNA. Journal of the American Chemical Society, 128(19), 6318-6319. doi:10.1021/ja060651gLhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., Bosca, F., & Miranda, M. A. (2007). Triplet Excited Fluoroquinolones as Mediators for Thymine Cyclobutane Dimer Formation in DNA. The Journal of Physical Chemistry B, 111(25), 7409-7414. doi:10.1021/jp070167fMarrot, L., BelaĂŻdi, J. P., Jones, C., Perez, P., Meunier, J. R., Riou, L., & Sarasin, A. (2003). Molecular Responses to Photogenotoxic Stress Induced by the Antibiotic Lomefloxacin in Human Skin Cells: From DNA Damage to Apoptosis. Journal of Investigative Dermatology, 121(3), 596-606. doi:10.1046/j.1523-1747.2003.12422.xLamola, A. A. (1970). Triplet photosensitization and the photobiology of thymine dimers in DNA. Pure and Applied Chemistry, 24(3), 599-610. doi:10.1351/pac197024030599Lamola, A. A., & Yamane, T. (1967). Sensitized photodimerization of thymine in DNA. Proceedings of the National Academy of Sciences, 58(2), 443-446. doi:10.1073/pnas.58.2.443Patrick, M. H., & Snow, J. M. (1977). STUDIES ON THYMINE-DERIVED UV PHOTO-PRODUCTS IN DNA—II. A COMPARATIVE ANALYSIS OF DAMAGE CAUSED BY 254 NM IRRADIATION AND TRIPLET-STATE PHOTOSENSITIZATION. Photochemistry and Photobiology, 25(4), 373-384. doi:10.1111/j.1751-1097.1977.tb07356.xGuillo, L., Blais, J., Vigny, P., & Spassky, A. (1995). SELECTIVE DNA THYMINE DIMERIZATION DURING UVA IRRADIATION IN THE PRESENCE OF A SATURATED PYRIDOPSORALEN. Photochemistry and Photobiology, 61(4), 331-335. doi:10.1111/j.1751-1097.1995.tb08617.xRobinson, K. S., Traynor, N. J., Moseley, H., Ferguson, J., & Woods, J. A. (2010). Cyclobutane pyrimidine dimers are photosensitised by carprofen plus UVA in human HaCaT cells. Toxicology in Vitro, 24(4), 1126-1132. doi:10.1016/j.tiv.2010.03.007Marrot, L., & Meunier, J.-R. (2008). Skin DNA photodamage and its biological consequences. Journal of the American Academy of Dermatology, 58(5), S139-S148. doi:10.1016/j.jaad.2007.12.007Walrant, P., Santos, R., & Charlier, M. (1976). ROLE OF COMPLEX FORMATION IN THE PHOTOSENSITIZED DEGRADATION OF DNA INDUCED BY N‘-FORMYLKYNURENINE. Photochemistry and Photobiology, 24(1), 13-19. doi:10.1111/j.1751-1097.1976.tb06792.xBolton, K., Martincigh, B. S., & Salter, L. F. (1992). The potential carcinogenic effect of Uvinul DS49 — a common UV absorber used in cosmetics. Journal of Photochemistry and Photobiology A: Chemistry, 63(2), 241-248. doi:10.1016/1010-6030(92)85142-hAliwell, S. R., Martincigh, B. S., & Salter, L. F. (1993). Para-aminobenzoic acid-photosensitized dimerization of thymine II. In pUC19 plasmid DNA. Journal of Photochemistry and Photobiology A: Chemistry, 71(2), 147-153. doi:10.1016/1010-6030(93)85066-hDesnous, C., Guillaume, D., & Clivio, P. (2010). Spore Photoproduct: A Key to Bacterial Eternal Life. Chemical Reviews, 110(3), 1213-1232. doi:10.1021/cr0781972Donnellan, J. E., & Setlow, R. B. (1965). Thymine Photoproducts but not Thymine Dimers Found in Ultraviolet-Irradiated Bacterial Spores. Science, 149(3681), 308-310. doi:10.1126/science.149.3681.308Mantel, C., Chandor, A., Gasparutto, D., Douki, T., Atta, M., Fontecave, M., 
 Bardet, M. (2008). Combined NMR and DFT Studies for the Absolute Configuration Elucidation of the Spore Photoproduct, a UV-Induced DNA Lesion. Journal of the American Chemical Society, 130(50), 16978-16984. doi:10.1021/ja805032rDouki, T., Setlow, B., & Setlow, P. (2005). Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochemical & Photobiological Sciences, 4(8), 591. doi:10.1039/b503771aDouki, T. (2003). Inter-strand photoproducts are produced in high yield within A-DNA exposed to UVC radiation. Nucleic Acids Research, 31(12), 3134-3142. doi:10.1093/nar/gkg408Nicholson, W. L., Setlow, B., & Setlow, P. (1991). Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers. Proceedings of the National Academy of Sciences, 88(19), 8288-8292. doi:10.1073/pnas.88.19.8288Rahn, R. O., & Hosszu, J. L. (1969). Influence of relative humidity on the photochemistry of DNA films. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 190(1), 126-131. doi:10.1016/0005-2787(69)90161-0Douki, T., & Cadet, J. (2003). Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA. Photochemical & Photobiological Sciences, 2(4), 433. doi:10.1039/b300173cVarghese, A. J. (1970). Photochemistry of thymidine in ice. Biochemistry, 9(24), 4781-4787. doi:10.1021/bi00826a023GROMOVA E. BALANZAT B. GERVAIS R. N, M. (1998). The direct effect of heavy ions and electrons on thymidine in the solid state

    One-dimensional mixtures of several ultracold atoms: a review

    Full text link
    [EN] Recent theoretical and experimental progress on studying one-dimensional systems of bosonic, fermionic, and Bose-Fermi mixtures of a few ultracold atoms confined in traps is reviewed in the broad context of mesoscopic quantum physics. We pay special attention to limiting cases of very strong or very weak interactions and transitions between them. For bosonic mixtures, we describe the developments in systems of three and four atoms as well as different extensions to larger numbers of particles. We also briefly review progress in the case of spinor Bose gases of a few atoms. For fennionic mixtures, we discuss a special role of spin and present a detailed discussion of the two- and three-atom cases. We discuss the advantages and disadvantages of different computation methods applied to systems with intermediate interactions. In the case of very strong repulsion, close to the infinite limit, we discuss approaches based on effective spin chain descriptions. We also report on recent studies on higher-spin mixtures and inter-component attractive forces. For both statistics, we pay particular attention to impurity problems and mass imbalance cases. Finally, we describe the recent advances on trapped Bose-Fermi mixtures, which allow for a theoretical combination of previous concepts, well illustrating the importance of quantum statistics and inter-particle interactions. Lastly, we report on fundamental questions related to the subject which we believe will inspire further theoretical developments and experimental verification.T S acknowledge financial support from the (Polish) National Science Centre with Grant No. 2016/22/E/ST2/00555. MAGM acknowledges funding from the Spanish Ministry MINECO (National Plan15 Grant: FISICATEAMO No. FIS2016-79508-P, SEVERO OCHOA No. SEV-2015-0522, FPI), European Social Fund, Fundacio Cellex, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341 and CERCA/Program), ERC AdG OSYRIS, EU FETPRO QUIC, and the (Polish) National Science Centre, Symfonia Grant No. 2016/20/W/ST4/00314.Sowinski, T.; Garcia March, MA. (2019). One-dimensional mixtures of several ultracold atoms: a review. Reports on Progress in Physics. 82(10):1-44. https://doi.org/10.1088/1361-6633/ab3a80S1448210Pethick, C. J., & Smith, H. (2008). Bose–Einstein Condensation in Dilute Gases. doi:10.1017/cbo9780511802850Lewenstein, M., Sanpera, A., & Ahufinger, V. (2012). Ultracold Atoms in Optical Lattices. doi:10.1093/acprof:oso/9780199573127.001.0001Blume, D. (2010). Jumping from two and three particles to infinitely many. Physics, 3. doi:10.1103/physics.3.74Blume, D. (2012). Few-body physics with ultracold atomic and molecular systems in traps. Reports on Progress in Physics, 75(4), 046401. doi:10.1088/0034-4885/75/4/046401Kinoshita, T. (2004). Observation of a One-Dimensional Tonks-Girardeau Gas. Science, 305(5687), 1125-1128. doi:10.1126/science.1100700Paredes, B., Widera, A., Murg, V., Mandel, O., Fölling, S., Cirac, I., 
 Bloch, I. (2004). Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature, 429(6989), 277-281. doi:10.1038/nature02530Kinoshita, T., Wenger, T., & Weiss, D. S. (2005). Local Pair Correlations in One-Dimensional Bose Gases. Physical Review Letters, 95(19). doi:10.1103/physrevlett.95.190406Cheinet, P., Trotzky, S., Feld, M., Schnorrberger, U., Moreno-Cardoner, M., Fölling, S., & Bloch, I. (2008). Counting Atoms Using Interaction Blockade in an Optical Superlattice. Physical Review Letters, 101(9). doi:10.1103/physrevlett.101.090404Will, S., Best, T., Schneider, U., HackermĂŒller, L., LĂŒhmann, D.-S., & Bloch, I. (2010). Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature, 465(7295), 197-201. doi:10.1038/nature09036He, X., Xu, P., Wang, J., & Zhan, M. (2010). High efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator. Optics Express, 18(13), 13586. doi:10.1364/oe.18.013586Bourgain, R., Pellegrino, J., Fuhrmanek, A., Sortais, Y. R. P., & Browaeys, A. (2013). Evaporative cooling of a small number of atoms in a single-beam microscopic dipole trap. Physical Review A, 88(2). doi:10.1103/physreva.88.023428Moritz, H., Stöferle, T., GĂŒnter, K., Köhl, M., & Esslinger, T. (2005). Confinement Induced Molecules in a 1D Fermi Gas. Physical Review Letters, 94(21). doi:10.1103/physrevlett.94.210401Liao, Y., Rittner, A. S. C., Paprotta, T., Li, W., Partridge, G. B., Hulet, R. G., 
 Mueller, E. J. (2010). Spin-imbalance in a one-dimensional Fermi gas. Nature, 467(7315), 567-569. doi:10.1038/nature09393Serwane, F., Zurn, G., Lompe, T., Ottenstein, T. B., Wenz, A. N., & Jochim, S. (2011). Deterministic Preparation of a Tunable Few-Fermion System. Science, 332(6027), 336-338. doi:10.1126/science.1201351Wenz, A. N., Zurn, G., Murmann, S., Brouzos, I., Lompe, T., & Jochim, S. (2013). From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, 342(6157), 457-460. doi:10.1126/science.1240516Murmann, S., Deuretzbacher, F., ZĂŒrn, G., Bjerlin, J., Reimann, S. M., Santos, L., 
 Jochim, S. (2015). Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap. Physical Review Letters, 115(21). doi:10.1103/physrevlett.115.215301Murmann, S., Bergschneider, A., Klinkhamer, V. M., ZĂŒrn, G., Lompe, T., & Jochim, S. (2015). Two Fermions in a Double Well: Exploring a Fundamental Building Block of the Hubbard Model. Physical Review Letters, 114(8). doi:10.1103/physrevlett.114.080402McGuire, J. B. (1964). Study of Exactly Soluble One‐Dimensional N‐Body Problems. Journal of Mathematical Physics, 5(5), 622-636. doi:10.1063/1.1704156ZĂŒrn, G., Serwane, F., Lompe, T., Wenz, A. N., Ries, M. G., Bohn, J. E., & Jochim, S. (2012). Fermionization of Two Distinguishable Fermions. Physical Review Letters, 108(7). doi:10.1103/physrevlett.108.075303ZĂŒrn, G., Wenz, A. N., Murmann, S., Bergschneider, A., Lompe, T., & Jochim, S. (2013). Pairing in Few-Fermion Systems with Attractive Interactions. Physical Review Letters, 111(17). doi:10.1103/physrevlett.111.175302Chuu, C.-S., Schreck, F., Meyrath, T. P., Hanssen, J. L., Price, G. N., & Raizen, M. G. (2005). Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas. Physical Review Letters, 95(26). doi:10.1103/physrevlett.95.260403Rontani, M. (2012). Tunneling Theory of Two Interacting Atoms in a Trap. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.115302Lode, A. U. J., Streltsov, A. I., Sakmann, K., Alon, O. E., & Cederbaum, L. S. (2012). How an interacting many-body system tunnels through a potential barrier to open space. Proceedings of the National Academy of Sciences, 109(34), 13521-13525. doi:10.1073/pnas.1201345109Bloch, I., Dalibard, J., & Zwerger, W. (2008). Many-body physics with ultracold gases. Reviews of Modern Physics, 80(3), 885-964. doi:10.1103/revmodphys.80.885Chin, C., Grimm, R., Julienne, P., & Tiesinga, E. (2010). Feshbach resonances in ultracold gases. Reviews of Modern Physics, 82(2), 1225-1286. doi:10.1103/revmodphys.82.1225Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E., & Rigol, M. (2011). One dimensional bosons: From condensed matter systems to ultracold gases. Reviews of Modern Physics, 83(4), 1405-1466. doi:10.1103/revmodphys.83.1405Guan, X.-W., Batchelor, M. T., & Lee, C. (2013). Fermi gases in one dimension: From Bethe ansatz to experiments. Reviews of Modern Physics, 85(4), 1633-1691. doi:10.1103/revmodphys.85.1633Zinner, N. T. (2016). Exploring the few- to many-body crossover using cold atoms in one dimension. EPJ Web of Conferences, 113, 01002. doi:10.1051/epjconf/201611301002Braaten, E., & Hammer, H.-W. (2006). Universality in few-body systems with large scattering length. Physics Reports, 428(5-6), 259-390. doi:10.1016/j.physrep.2006.03.001Naidon, P., & Endo, S. (2017). Efimov physics: a review. Reports on Progress in Physics, 80(5), 056001. doi:10.1088/1361-6633/aa50e8Polkovnikov, A., Sengupta, K., Silva, A., & Vengalattore, M. (2011). Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Reviews of Modern Physics, 83(3), 863-883. doi:10.1103/revmodphys.83.863Eisert, J., Friesdorf, M., & Gogolin, C. (2015). Quantum many-body systems out of equilibrium. Nature Physics, 11(2), 124-130. doi:10.1038/nphys3215Busch, T., Englert, B.-G., RzaĆŒewski, K., & Wilkens, M. (1998). Foundations of Physics, 28(4), 549-559. doi:10.1023/a:1018705520999WEI, B.-B. (2009). TWO ONE-DIMENSIONAL INTERACTING PARTICLES IN A HARMONIC TRAP. International Journal of Modern Physics B, 23(18), 3709-3715. doi:10.1142/s0217979209053345Olshanii, M. (1998). Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Physical Review Letters, 81(5), 938-941. doi:10.1103/physrevlett.81.938Idziaszek, Z., & Calarco, T. (2006). Analytical solutions for the dynamics of two trapped interacting ultracold atoms. Physical Review A, 74(2). doi:10.1103/physreva.74.022712SowiƄski, T., Brewczyk, M., Gajda, M., & RzÄ…ĆŒewski, K. (2010). Dynamics and decoherence of two cold bosons in a one-dimensional harmonic trap. Physical Review A, 82(5). doi:10.1103/physreva.82.053631Ebert, M., Volosniev, A., & Hammer, H.-W. (2016). Two cold atoms in a time-dependent harmonic trap in one dimension. Annalen der Physik, 528(9-10), 693-704. doi:10.1002/andp.201500365Budewig, L., Mistakidis, S. I., & Schmelcher, P. (2019). Quench dynamics of two one-dimensional harmonically trapped bosons bridging attraction and repulsion. Molecular Physics, 117(15-16), 2043-2057. doi:10.1080/00268976.2019.1575995Sala, S., ZĂŒrn, G., Lompe, T., Wenz, A. N., Murmann, S., Serwane, F., 
 Saenz, A. (2013). Coherent Molecule Formation in Anharmonic Potentials Near Confinement-Induced Resonances. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.203202Moshinsky, M. (1968). How Good is the Hartree-Fock Approximation. American Journal of Physics, 36(1), 52-53. doi:10.1119/1.1974410Bialynicki-Birula, I. (1985). Exact solutions of nonrelativistic classical and quantum field theory with harmonic forces. Letters in Mathematical Physics, 10(2-3), 189-194. doi:10.1007/bf00398157ZaƂuska-Kotur, M. A., Gajda, M., OrƂowski, A., & Mostowski, J. (2000). Soluble model of many interacting quantum particles in a trap. Physical Review A, 61(3). doi:10.1103/physreva.61.033613Ko, Y., & Kim, K. S. (2012). Lifetime of a Nuclear Excited State in Cascade Decay. Few-Body Systems, 54(1-4), 437-440. doi:10.1007/s00601-012-0408-0Klaiman, S., Streltsov, A. I., & Alon, O. E. (2017). Solvable model of a trapped mixture of Bose–Einstein condensates. Chemical Physics, 482, 362-373. doi:10.1016/j.chemphys.2016.07.011Idziaszek, Z., & Calarco, T. (2005). Two atoms in an anisotropic harmonic trap. Physical Review A, 71(5). doi:10.1103/physreva.71.050701Scoquart, T., Seaward, J., Jackson, S. G., & Olshanii, M. (2016). Exactly solvable quantum few-body systems associated with the symmetries of the three-dimensional and four-dimensional icosahedra. SciPost Physics, 1(1). doi:10.21468/scipostphys.1.1.005Olshanii, M., Scoquart, T., Yampolsky, D., Dunjko, V., & Jackson, S. G. (2018). Creating entanglement using integrals of motion. Physical Review A, 97(1). doi:10.1103/physreva.97.013630Gao, B. (1998). Solutions of the Schrödinger equation for an attractive1/r6potential. Physical Review A, 58(3), 1728-1734. doi:10.1103/physreva.58.1728Gao, B. (1999). Repulsive1/r3interaction. Physical Review A, 59(4), 2778-2786. doi:10.1103/physreva.59.2778Koƛcik, P., & SowiƄski, T. (2018). Exactly solvable model of two trapped quantum particles interacting via finite-range soft-core interactions. Scientific Reports, 8(1). doi:10.1038/s41598-017-18505-5Koƛcik, P., & SowiƄski, T. (2019). Exactly solvable model of two interacting Rydberg-dressed atoms confined in a two-dimensional harmonic trap. Scientific Reports, 9(1). doi:10.1038/s41598-019-48442-4Lieb, E. H., & Liniger, W. (1963). Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State. Physical Review, 130(4), 1605-1616. doi:10.1103/physrev.130.1605Lieb, E. H. (1963). Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum. Physical Review, 130(4), 1616-1624. doi:10.1103/physrev.130.1616Calogero, F. (1971). Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials. Journal of Mathematical Physics, 12(3), 419-436. doi:10.1063/1.1665604Sutherland, B. (1971). Quantum Many‐Body Problem in One Dimension: Ground State. Journal of Mathematical Physics, 12(2), 246-250. doi:10.1063/1.1665584Pittman, S. M., Beau, M., Olshanii, M., & del Campo, A. (2017). Truncated Calogero-Sutherland models. Physical Review B, 95(20). doi:10.1103/physrevb.95.205135Marchukov, O. V., & Fischer, U. R. (2019). Self-consistent determination of the many-body state of ultracold bosonic atoms in a one-dimensional harmonic trap. Annals of Physics, 405, 274-288. doi:10.1016/j.aop.2019.03.023Astrakharchik, G. E., Blume, D., Giorgini, S., & Granger, B. E. (2004). Quasi-One-Dimensional Bose Gases with a Large Scattering Length. Physical Review Letters, 92(3). doi:10.1103/physrevlett.92.030402Astrakharchik, G. E., Boronat, J., Casulleras, J., & Giorgini, S. (2005). Beyond the Tonks-Girardeau Gas: Strongly Correlated Regime in Quasi-One-Dimensional Bose Gases. Physical Review Letters, 95(19). doi:10.1103/physrevlett.95.190407Batchelor, M. T., Bortz, M., Guan, X. W., & Oelkers, N. (2005). Evidence for the super Tonks–Girardeau gas. Journal of Statistical Mechanics: Theory and Experiment, 2005(10), L10001-L10001. doi:10.1088/1742-5468/2005/10/l10001Haller, E., Gustavsson, M., Mark, M. J., Danzl, J. G., Hart, R., Pupillo, G., & Nagerl, H.-C. (2009). Realization of an Excited, Strongly Correlated Quantum Gas Phase. Science, 325(5945), 1224-1227. doi:10.1126/science.1175850Cazalilla, M. A., & Ho, A. F. (2003). Instabilities in Binary Mixtures of One-Dimensional Quantum Degenerate Gases. Physical Review Letters, 91(15). doi:10.1103/physrevlett.91.150403Tempfli, E., Zöllner, S., & Schmelcher, P. (2009). Binding between two-component bosons in one dimension. New Journal of Physics, 11(7), 073015. doi:10.1088/1367-2630/11/7/073015Petrov, D. S. (2015). Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Physical Review Letters, 115(15). doi:10.1103/physrevlett.115.155302Zin, P., Pylak, M., Wasak, T., Gajda, M., & Idziaszek, Z. (2018). Quantum Bose-Bose droplets at a dimensional crossover. Physical Review A, 98(5). doi:10.1103/physreva.98.051603Chiquillo, E. (2018). Equation of state of the one- and three-dimensional Bose-Bose gases. Physical Review A, 97(6). doi:10.1103/physreva.97.063605Cabrera, C. R., Tanzi, L., Sanz, J., Naylor, B., Thomas, P., Cheiney, P., & Tarruell, L. (2017). Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science, 359(6373), 301-304. doi:10.1126/science.aao5686Semeghini, G., Ferioli, G., Masi, L., Mazzinghi, C., Wolswijk, L., Minardi, F., 
 Fattori, M. (2018). Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. Physical Review Letters, 120(23). doi:10.1103/physrevlett.120.235301Cheiney, P., Cabrera, C. R., Sanz, J., Naylor, B., Tanzi, L., & Tarruell, L. (2018). Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates. Physical Review Letters, 120(13). doi:10.1103/physrevlett.120.135301Nishida, Y. (2018). Universal bound states of one-dimensional bosons with two- and three-body attractions. Physical Review A, 97(6). doi:10.1103/physreva.97.061603Pricoupenko, A., & Petrov, D. S. (2018). Dimer-dimer zero crossing and dilute dimerized liquid in a one-dimensional mixture. Physical Review A, 97(6). doi:10.1103/physreva.97.063616Cikojević, V., Markić, L. V., Astrakharchik, G. E., & Boronat, J. (2019). Universality in ultradilute liquid Bose-Bose mixtures. Physical Review A, 99(2). doi:10.1103/physreva.99.023618Parisi, L., Astrakharchik, G. E., & Giorgini, S. (2019). Liquid State of One-Dimensional Bose Mixtures: A Quantum Monte Carlo Study. Physical Review Letters, 122(10). doi:10.1103/physrevlett.122.105302Guijarro, G., Pricoupenko, A., Astrakharchik, G. E., Boronat, J., & Petrov, D. S. (2018). One-dimensional three-boson problem with two- and three-body interactions. Physical Review A, 97(6). doi:10.1103/physreva.97.061605Tiesinga, E., & Johnson, P. R. (2011). Collapse and revival dynamics of number-squeezed superfluids of ultracold atoms in optical lattices. Physical Review A, 83(6). doi:10.1103/physreva.83.063609Silva-Valencia, J., & Souza, A. M. C. (2011). First Mott lobe of bosons with local two- and three-body interactions. Physical Review A, 84(6). doi:10.1103/physreva.84.065601SowiƄski, T. (2012). Exact diagonalization of the one-dimensional Bose-Hubbard model with local three-body interactions. Physical Review A, 85(6). doi:10.1103/physreva.85.065601Hincapie-F, A. F., Franco, R., & Silva-Valencia, J. (2016). Mott lobes of theS=1Bose-Hubbard model with three-body interactions. Physical Review A, 94(3). doi:10.1103/physreva.94.033623Dobrzyniecki, J., Li, X., Nielsen, A. E. B., & SowiƄski, T. (2018). Effective three-body interactions for bosons in a double-well confinement. Physical Review A, 97(1). doi:10.1103/physreva.97.013609Barranco, M., Guardiola, R., HernĂĄndez, S., Mayol, R., Navarro, J., & Pi, M. (2006). Helium Nanodroplets: An Overview. Journal of Low Temperature Physics, 142(1-2), 1-81. doi:10.1007/s10909-005-9267-0Ho, T.-L., & Shenoy, V. B. (1996). Binary Mixtures of Bose Condensates of Alkali Atoms. Physical Review Letters, 77(16), 3276-3279. doi:10.1103/physrevlett.77.3276Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A., & Wieman, C. E. (1997). Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Physical Review Letters, 78(4), 586-589. doi:10.1103/physrevlett.78.586Esry, B. D., Greene, C. H., Burke, Jr., J. P., & Bohn, J. L. (1997). Hartree-Fock Theory for Double Condensates. Physical Review Letters, 78(19), 3594-3597. doi:10.1103/physrevlett.78.3594Busch, T., Cirac, J. I., PĂ©rez-GarcĂ­a, V. M., & Zoller, P. (1997). Stability and collective excitations of a two-component Bose-Einstein condensed gas: A moment approach. Physical Review A, 56(4), 2978-2983. doi:10.1103/physreva.56.2978Ao, P., & Chui, S. T. (1998). Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases. Physical Review A, 58(6), 4836-4840. doi:10.1103/physreva.58.4836Pu, H., & Bigelow, N. P. (1998). Properties of Two-Species Bose Condensates. Physical Review Letters, 80(6), 1130-1133. doi:10.1103/physrevlett.80.1130Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E., & Cornell, E. A. (1998). Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates. Physical Review Letters, 81(8), 1539-1542. doi:10.1103/physrevlett.81.1539Gordon, D., & Savage, C. M. (1998). Excitation spectrum and instability of a two-species Bose-Einstein condensate. Physical Review A, 58(2), 1440-1444. doi:10.1103/physreva.58.1440Goldstein, E. V., & Meystre, P. (1997). Quasiparticle instabilities in multicomponent atomic condensates. Physical Review A, 55(4), 2935-2940. doi:10.1103/physreva.55.2935Öhberg, P., & Stenholm, S. (1998). Hartree-Fock treatment of the two-component Bose-Einstein condensate. Physical Review A, 57(2), 1272-1279. doi:10.1103/physreva.57.1272Roy, A., Gautam, S., & Angom, D. (2014). Goldstone modes and bifurcations in phase-separated binary condensates at finite temperature. Physical Review A, 89(1). doi:10.1103/physreva.89.013617Roy, A., & Angom, D. (2015). Thermal suppression of phase separation in condensate mixtures. Physical Review A, 92(1). doi:10.1103/physreva.92.011601Cikojević, V., Markić, L. V., & Boronat, J. (2018). Harmonically trapped Bose–Bose mixtures: a quantum Monte Carlo study. New Journal of Physics, 20(8), 085002. doi:10.1088/1367-2630/aad6ccGirardeau, M. (1960). Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension. Journal of Mathematical Physics, 1(6), 516-523. doi:10.1063/1.1703687Tonks, L. (1936). The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres. Physical Review, 50(10), 955-963. doi:10.1103/physrev.50.955Yang, C. N. (1967). Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction. Physical Review Letters, 19(23), 1312-1315. doi:10.1103/physrevlett.19.1312Bethe, H. (1931). Zur Theorie der Metalle. Zeitschrift fïżœr Physik, 71(3-4), 205-226. doi:10.1007/bf01341708Gaudin, M., & Caux, J.-S. (2009). The Bethe Wavefunction. doi:10.1017/cbo9781107053885Petrov, D. S., Shlyapnikov, G. V., & Walraven, J. T. M. (2000). Regimes of Quantum Degeneracy in Trapped 1D Gases. Physical Review Letters, 85(18), 3745-3749. doi:10.1103/physrevlett.85.3745Dunjko, V., Lorent, V., & Olshanii, M. (2001). Bosons in Cigar-Shaped Traps: Thomas-Fermi Regime, Tonks-Girardeau Regime, and In Between. Physical Review Letters, 86(24), 5413-5416. doi:10.1103/physrevlett.86.5413Girardeau, M. D., & Wright, E. M. (2001). Bose-Fermi Variational Theory of the Bose-Einstein Condensate Crossover to the Tonks Gas. Physical Review Letters, 87(21). doi:10.1103/physrevlett.87.210401Blume, D. (2002). Fermionization of a bosonic gas under highly elongated confinement: A diffusion quantum Monte Carlo study. Physical Review A, 66(5). doi:10.1103/physreva.66.053613Gangardt, D. M., & Shlyapnikov, G. V. (2003). Stability and Phase Coherence of Trapped 1D Bose Gases. Physical Review Letters, 90(1). doi:10.1103/physrevlett.90.010401Kheruntsyan, K. V., Gangardt, D. M., Drummond, P. D., & Shlyapnikov, G. V. (2003). Pair Correlations in a Finite-Temperature 1D Bose Gas. Physical Review Letters, 91(4). doi:10.1103/ph

    On the Number of Edges of Fan-Crossing Free Graphs

    Full text link
    A graph drawn in the plane with n vertices is k-fan-crossing free for k > 1 if there are no k+1 edges g,e1,...ekg,e_1,...e_k, such that e1,e2,...eke_1,e_2,...e_k have a common endpoint and gg crosses all eie_i. We prove a tight bound of 4n-8 on the maximum number of edges of a 2-fan-crossing free graph, and a tight 4n-9 bound for a straight-edge drawing. For k > 2, we prove an upper bound of 3(k-1)(n-2) edges. We also discuss generalizations to monotone graph properties
    • 

    corecore