18,709 research outputs found

    Complexity of Anchored Crossing Number and Crossing Number of Almost Planar Graphs

    Full text link
    In this paper we deal with the problem of computing the exact crossing number of almost planar graphs and the closely related problem of computing the exact anchored crossing number of a pair of planar graphs. It was shown by [Cabello and Mohar, 2013] that both problems are NP-hard; although they required an unbounded number of high-degree vertices (in the first problem) or an unbounded number of anchors (in the second problem) to prove their result. Somehow surprisingly, only three vertices of degree greater than 3, or only three anchors, are sufficient to maintain hardness of these problems, as we prove here. The new result also improves the previous result on hardness of joint crossing number on surfaces by [Hlin\v{e}n\'y and Salazar, 2015]. Our result is best possible in the anchored case since the anchored crossing number of a pair of planar graphs with two anchors each is trivial, and close to being best possible in the almost planar case since the crossing number is efficiently computable for almost planar graphs of maximum degree 3 [Riskin 1996, Cabello and Mohar 2011]

    Konstruksi Famili Graf Hampir Planar dengan Angka Perpotongan Tertentu

    Full text link
    KONSTRUKSI FAMILI GRAF HAMPIR PLANAR DENGAN ANGKA PERPOTONGAN TERTENTU Benny Pinontoan1) 1) Program Studi Matematika FMIPA Universitas Sam Ratulangi Manado, 95115ABSTRAK Sebuah graf adalah pasangan himpunan tak kosong simpul dan himpunan sisi. Graf dapat digambar pada bidang dengan atau tanpa perpotongan. Angka perpotongan adalah jumlah perpotongan terkecil di antara semua gambar graf pada bidang. Graf dengan angka perpotongan nol disebut planar. Graf memiliki penerapan penting pada desain Very Large Scale of Integration (VLSI). Sebuah graf dinamakan perpotongan kritis jika penghapusan sebuah sisi manapun menurunkan angka perpotongannya, sedangkan sebuah graf dinamakan hampir planar jika menghapus salah satu sisinya membuat graf yang sisa menjadi planar. Banyak famili graf perpotongan kritis yang dapat dibentuk dari bagian-bagian kecil yang disebut ubin yang diperkenalkan oleh Pinontoan dan Richter (2003). Pada tahun 2010, Bokal memperkenalkan operasi perkalian zip untuk graf. Dalam artikel ini ditunjukkan sebuah konstruksi dengan menggunakan ubin dan perkalian zip yang jika diberikan bilangan bulat k ³ 1, dapat menghasilkan famili tak hingga graf hampir planar dengan angka perpotongan k. Kata kunci: angka perpotongan, ubin graf, graf hampir planar. CONSTRUCTION OF INFINITE FAMILIES OF ALMOST PLANAR GRAPH WITH GIVEN CROSSING NUMBER ABSTRACT A graph is a pair of a non-empty set of vertices and a set of edges. Graphs can be drawn on the plane with or without crossing of its edges. Crossing number of a graph is the minimal number of crossings among all drawings of the graph on the plane. Graphs with crossing number zero are called planar. Crossing number problems find important applications in the design of layout of Very Large Scale of Integration (VLSI). A graph is crossing-critical if deleting of any of its edge decreases its crossing number. A graph is called almost planar if deleting one edge makes the graph planar. Many infinite sequences of crossing-critical graphs can be made up by gluing small pieces, called tiles introduced by Pinontoan and Richter (2003). In 2010, Bokal introduced the operation zip product of graphs. This paper shows a construction by using tiles and zip product, given an integer k ³ 1, to build an infinite family of almost planar graphs having crossing number k

    CONSTRUCTION OF INFINITE FAMILIES OF ALMOST PLANAR GRAPH WITH GIVEN CROSSING NUMBER

    Get PDF
    A graph is a pair of a non-empty set of vertices and a set of edges. Graphs can be drawn on the plane with or without crossing of its edges. Crossing number of a graph is the minimal number of crossings among all drawings of the graph on the plane. Graphs with crossing number zero are called planar. Crossing number problems find important applications in the design of layout of Very Large Scale of Integration (VLSI). A graph is crossing-critical if deleting of any of its edge decreases its crossing number. A graph is called almost planar if deleting one edge makes the graph planar. Many infinite sequences of crossing-critical graphs can be made up by gluing small pieces, called tiles introduced b

    Untangling Circular Drawings: Algorithms and Complexity

    Get PDF
    We consider the problem of untangling a given (non-planar) straight-line circular drawing δG\delta_G of an outerplanar graph G=(V,E)G=(V, E) into a planar straight-line circular drawing by shifting a minimum number of vertices to a new position on the circle. For an outerplanar graph GG, it is clear that such a crossing-free circular drawing always exists and we define the circular shifting number shift(δG)(\delta_G) as the minimum number of vertices that are required to be shifted in order to resolve all crossings of δG\delta_G. We show that the problem Circular Untangling, asking whether shift(δG)K(\delta_G) \le K for a given integer KK, is NP-complete. For nn-vertex outerplanar graphs, we obtain a tight upper bound of shift(δG)nn22(\delta_G) \le n - \lfloor\sqrt{n-2}\rfloor -2. Based on these results we study Circular Untangling for almost-planar circular drawings, in which a single edge is involved in all the crossings. In this case, we provide a tight upper bound shift(δG)n21(\delta_G) \le \lfloor \frac{n}{2} \rfloor-1 and present a constructive polynomial-time algorithm to compute the circular shifting number of almost-planar drawings.Comment: 20 pages, 10 figures, extended version of ISAAC 2021 pape

    Universal Geometric Graphs

    Full text link
    We introduce and study the problem of constructing geometric graphs that have few vertices and edges and that are universal for planar graphs or for some sub-class of planar graphs; a geometric graph is \emph{universal} for a class H\mathcal H of planar graphs if it contains an embedding, i.e., a crossing-free drawing, of every graph in H\mathcal H. Our main result is that there exists a geometric graph with nn vertices and O(nlogn)O(n \log n) edges that is universal for nn-vertex forests; this extends to the geometric setting a well-known graph-theoretic result by Chung and Graham, which states that there exists an nn-vertex graph with O(nlogn)O(n \log n) edges that contains every nn-vertex forest as a subgraph. Our O(nlogn)O(n \log n) bound on the number of edges cannot be improved, even if more than nn vertices are allowed. We also prove that, for every positive integer hh, every nn-vertex convex geometric graph that is universal for nn-vertex outerplanar graphs has a near-quadratic number of edges, namely Ωh(n21/h)\Omega_h(n^{2-1/h}); this almost matches the trivial O(n2)O(n^2) upper bound given by the nn-vertex complete convex geometric graph. Finally, we prove that there exists an nn-vertex convex geometric graph with nn vertices and O(nlogn)O(n \log n) edges that is universal for nn-vertex caterpillars.Comment: 20 pages, 8 figures; a 12-page extended abstracts of this paper will appear in the Proceedings of the 46th Workshop on Graph-Theoretic Concepts in Computer Science (WG 2020

    Straight-line Drawability of a Planar Graph Plus an Edge

    Full text link
    We investigate straight-line drawings of topological graphs that consist of a planar graph plus one edge, also called almost-planar graphs. We present a characterization of such graphs that admit a straight-line drawing. The characterization enables a linear-time testing algorithm to determine whether an almost-planar graph admits a straight-line drawing, and a linear-time drawing algorithm that constructs such a drawing, if it exists. We also show that some almost-planar graphs require exponential area for a straight-line drawing
    corecore