23,414 research outputs found

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Handbook of Vascular Biometrics

    Get PDF

    The Fourth Biometric - Vein Recognition

    Get PDF

    Band-Limited Phase-Only Correlation (Blpoc) Using Fpga For Finger Vein Recognition System

    Get PDF
    Nowadays, due to the high security and reliable of finger vein pattern, it had become one of the major interests in the biometric research. In the last few years, a number of finger vein recognition algorithms have been proposed. Most of the proposed methods were implemented in software-based on a general-purpose processor, which have limitations on the processing speed, size and power consumption. To overcome these limitations, this thesis presents an architecture for finger vein recognition system based on BLPOC matching method. The BLPOC is a phase-based matching method which have benefits of high accuracy and less affected by image shifted or brightness changed. It involves a high computation process, which is 2D-DFT, therefore, it is necessary to implement on a hardware device such as FPGA. It consists of two types of multiplexer blocks, one DFT block, one CORDIC block, seven types of memory blocks, one subtracter block, one divider block and one comparator block; and is implemented using Verilog HDL and verified using the Altera Cyclone III EP3C120F780 FPGA board. The proposed DFT block had contributed to reduce the area used by 97% of the previously proposed DFT block. A finger vein image database of 204 classes has been used to evaluate the performance of the proposed architecture. Results show that the proposed architecture can process a single matching of two finger vein images in 1.15 ms, which is about nine times faster than the softwarebased implementation, while the accuracy is similar with the software-based implementation. In conclusion, the finger vein recognition system based on BLPOC is successfully implemented on a FPGA board with better processing time as compared with the software-based implementation

    Finger-Vein Recognition Based on Gabor Features

    Get PDF

    Palm vein recognition using scale invariant feature transform with RANSAC mismatching removal

    Get PDF
    Palm vein recognition has been gaining increasing interest as a biometric method, although there still remains an issue regarding difficulties in obtaining robust signals. In this paper, the effects of random sample consensus point mismatching removal and the use of different wavelengths of illumination on the recognition rate are investigated. The CASIA multi-spectral palm print image database was used to provide input signals and the scale invariant feature transform (SIFT) and random sample consensus (RANSAC) mismatching removal approaches were adopted for vein extraction and point feature matching. The results show that the RANSAC mismatching point removal was able to eliminate outliers while preserving the appropriate SIFT key points and that this led to an improvement in the equal error rate metric, signifying better recognition performance. The palm vein recognition system was found to achieve a better verification rate when infrared illumination in a specific spectral band was used to obtain the palm vein image
    corecore