52,197 research outputs found

    On Convergence of Emphatic Temporal-Difference Learning

    Full text link
    We consider emphatic temporal-difference learning algorithms for policy evaluation in discounted Markov decision processes with finite spaces. Such algorithms were recently proposed by Sutton, Mahmood, and White (2015) as an improved solution to the problem of divergence of off-policy temporal-difference learning with linear function approximation. We present in this paper the first convergence proofs for two emphatic algorithms, ETD(λ\lambda) and ELSTD(λ\lambda). We prove, under general off-policy conditions, the convergence in L1L^1 for ELSTD(λ\lambda) iterates, and the almost sure convergence of the approximate value functions calculated by both algorithms using a single infinitely long trajectory. Our analysis involves new techniques with applications beyond emphatic algorithms leading, for example, to the first proof that standard TD(λ\lambda) also converges under off-policy training for λ\lambda sufficiently large.Comment: A minor correction is made (see page 1 for details). 45 pages. A shorter 28-page article based on the first version appeared at the 28th Annual Conference on Learning Theory (COLT), 201

    Finite Sample Analyses for TD(0) with Function Approximation

    Full text link
    TD(0) is one of the most commonly used algorithms in reinforcement learning. Despite this, there is no existing finite sample analysis for TD(0) with function approximation, even for the linear case. Our work is the first to provide such results. Existing convergence rates for Temporal Difference (TD) methods apply only to somewhat modified versions, e.g., projected variants or ones where stepsizes depend on unknown problem parameters. Our analyses obviate these artificial alterations by exploiting strong properties of TD(0). We provide convergence rates both in expectation and with high-probability. The two are obtained via different approaches that use relatively unknown, recently developed stochastic approximation techniques

    A Convergent Off-Policy Temporal Difference Algorithm

    Full text link
    Learning the value function of a given policy (target policy) from the data samples obtained from a different policy (behavior policy) is an important problem in Reinforcement Learning (RL). This problem is studied under the setting of off-policy prediction. Temporal Difference (TD) learning algorithms are a popular class of algorithms for solving the prediction problem. TD algorithms with linear function approximation are shown to be convergent when the samples are generated from the target policy (known as on-policy prediction). However, it has been well established in the literature that off-policy TD algorithms under linear function approximation diverge. In this work, we propose a convergent on-line off-policy TD algorithm under linear function approximation. The main idea is to penalize the updates of the algorithm in a way as to ensure convergence of the iterates. We provide a convergence analysis of our algorithm. Through numerical evaluations, we further demonstrate the effectiveness of our algorithm

    Value Function Approximation in Zero-Sum Markov Games

    Full text link
    This paper investigates value function approximation in the context of zero-sum Markov games, which can be viewed as a generalization of the Markov decision process (MDP) framework to the two-agent case. We generalize error bounds from MDPs to Markov games and describe generalizations of reinforcement learning algorithms to Markov games. We present a generalization of the optimal stopping problem to a two-player simultaneous move Markov game. For this special problem, we provide stronger bounds and can guarantee convergence for LSTD and temporal difference learning with linear value function approximation. We demonstrate the viability of value function approximation for Markov games by using the Least squares policy iteration (LSPI) algorithm to learn good policies for a soccer domain and a flow control problem.Comment: Appears in Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI2002

    Geometric Insights into the Convergence of Nonlinear TD Learning

    Full text link
    While there are convergence guarantees for temporal difference (TD) learning when using linear function approximators, the situation for nonlinear models is far less understood, and divergent examples are known. Here we take a first step towards extending theoretical convergence guarantees to TD learning with nonlinear function approximation. More precisely, we consider the expected learning dynamics of the TD(0) algorithm for value estimation. As the step-size converges to zero, these dynamics are defined by a nonlinear ODE which depends on the geometry of the space of function approximators, the structure of the underlying Markov chain, and their interaction. We find a set of function approximators that includes ReLU networks and has geometry amenable to TD learning regardless of environment, so that the solution performs about as well as linear TD in the worst case. Then, we show how environments that are more reversible induce dynamics that are better for TD learning and prove global convergence to the true value function for well-conditioned function approximators. Finally, we generalize a divergent counterexample to a family of divergent problems to demonstrate how the interaction between approximator and environment can go wrong and to motivate the assumptions needed to prove convergence.Comment: ICLR 202

    Non-Asymptotic Analysis for Two Time-scale TDC with General Smooth Function Approximation

    Full text link
    Temporal-difference learning with gradient correction (TDC) is a two time-scale algorithm for policy evaluation in reinforcement learning. This algorithm was initially proposed with linear function approximation, and was later extended to the one with general smooth function approximation. The asymptotic convergence for the on-policy setting with general smooth function approximation was established in [bhatnagar2009convergent], however, the finite-sample analysis remains unsolved due to challenges in the non-linear and two-time-scale update structure, non-convex objective function and the time-varying projection onto a tangent plane. In this paper, we develop novel techniques to explicitly characterize the finite-sample error bound for the general off-policy setting with i.i.d.\ or Markovian samples, and show that it converges as fast as O(1/T)\mathcal O(1/\sqrt T) (up to a factor of O(logT)\mathcal O(\log T)). Our approach can be applied to a wide range of value-based reinforcement learning algorithms with general smooth function approximation.Comment: Accepted by NeurIPS 202

    Byzantine-Resilient Decentralized TD Learning with Linear Function Approximation

    Full text link
    This paper considers the policy evaluation problem in a multi-agent reinforcement learning (MARL) environment over decentralized and directed networks. The focus is on decentralized temporal difference (TD) learning with linear function approximation in the presence of unreliable or even malicious agents, termed as Byzantine agents. In order to evaluate the quality of a fixed policy in a common environment, agents usually run decentralized TD(λ\lambda) collaboratively. However, when some Byzantine agents behave adversarially, decentralized TD(λ\lambda) is unable to learn an accurate linear approximation for the true value function. We propose a trimmed-mean based Byzantine-resilient decentralized TD(λ\lambda) algorithm to perform policy evaluation in this setting. We establish the finite-time convergence rate, as well as the asymptotic learning error in the presence of Byzantine agents. Numerical experiments corroborate the robustness of the proposed algorithm

    Target-Based Temporal Difference Learning

    Full text link
    The use of target networks has been a popular and key component of recent deep Q-learning algorithms for reinforcement learning, yet little is known from the theory side. In this work, we introduce a new family of target-based temporal difference (TD) learning algorithms and provide theoretical analysis on their convergences. In contrast to the standard TD-learning, target-based TD algorithms maintain two separate learning parameters-the target variable and online variable. Particularly, we introduce three members in the family, called the averaging TD, double TD, and periodic TD, where the target variable is updated through an averaging, symmetric, or periodic fashion, mirroring those techniques used in deep Q-learning practice. We establish asymptotic convergence analyses for both averaging TD and double TD and a finite sample analysis for periodic TD. In addition, we also provide some simulation results showing potentially superior convergence of these target-based TD algorithms compared to the standard TD-learning. While this work focuses on linear function approximation and policy evaluation setting, we consider this as a meaningful step towards the theoretical understanding of deep Q-learning variants with target networks

    Conditions on Features for Temporal Difference-Like Methods to Converge

    Full text link
    The convergence of many reinforcement learning (RL) algorithms with linear function approximation has been investigated extensively but most proofs assume that these methods converge to a unique solution. In this paper, we provide a complete characterization of non-uniqueness issues for a large class of reinforcement learning algorithms, simultaneously unifying many counter-examples to convergence in a theoretical framework. We achieve this by proving a new condition on features that can determine whether the convergence assumptions are valid or non-uniqueness holds. We consider a general class of RL methods, which we call natural algorithms, whose solutions are characterized as the fixed point of a projected Bellman equation (when it exists); notably, bootstrapped temporal difference-based methods such as TD(λ)TD(\lambda) and GTD(λ)GTD(\lambda) are natural algorithms. Our main result proves that natural algorithms converge to the correct solution if and only if all the value functions in the approximation space satisfy a certain shape. This implies that natural algorithms are, in general, inherently prone to converge to the wrong solution for most feature choices even if the value function can be represented exactly. Given our results, we show that state aggregation based features are a safe choice for natural algorithms and we also provide a condition for finding convergent algorithms under other feature constructions.Comment: 13 pages, 6 figure

    A Multi-Agent Off-Policy Actor-Critic Algorithm for Distributed Reinforcement Learning

    Full text link
    This paper extends off-policy reinforcement learning to the multi-agent case in which a set of networked agents communicating with their neighbors according to a time-varying graph collaboratively evaluates and improves a target policy while following a distinct behavior policy. To this end, the paper develops a multi-agent version of emphatic temporal difference learning for off-policy policy evaluation, and proves convergence under linear function approximation. The paper then leverages this result, in conjunction with a novel multi-agent off-policy policy gradient theorem and recent work in both multi-agent on-policy and single-agent off-policy actor-critic methods, to develop and give convergence guarantees for a new multi-agent off-policy actor-critic algorithm
    corecore