9,486 research outputs found

    GMRES-Accelerated ADMM for Quadratic Objectives

    Full text link
    We consider the sequence acceleration problem for the alternating direction method-of-multipliers (ADMM) applied to a class of equality-constrained problems with strongly convex quadratic objectives, which frequently arise as the Newton subproblem of interior-point methods. Within this context, the ADMM update equations are linear, the iterates are confined within a Krylov subspace, and the General Minimum RESidual (GMRES) algorithm is optimal in its ability to accelerate convergence. The basic ADMM method solves a Īŗ\kappa-conditioned problem in O(Īŗ)O(\sqrt{\kappa}) iterations. We give theoretical justification and numerical evidence that the GMRES-accelerated variant consistently solves the same problem in O(Īŗ1/4)O(\kappa^{1/4}) iterations for an order-of-magnitude reduction in iterations, despite a worst-case bound of O(Īŗ)O(\sqrt{\kappa}) iterations. The method is shown to be competitive against standard preconditioned Krylov subspace methods for saddle-point problems. The method is embedded within SeDuMi, a popular open-source solver for conic optimization written in MATLAB, and used to solve many large-scale semidefinite programs with error that decreases like O(1/k2)O(1/k^{2}), instead of O(1/k)O(1/k), where kk is the iteration index.Comment: 31 pages, 7 figures. Accepted for publication in SIAM Journal on Optimization (SIOPT

    Convergence analysis of an Inexact Infeasible Interior Point method for Semidefinite Programming

    Get PDF
    In this paper we present an extension to SDP of the well known infeasible Interior Point method for linear programming of Kojima,Megiddo and Mizuno (A primal-dual infeasible-interior-point algorithm for Linear Programming, Math. Progr., 1993). The extension developed here allows the use of inexact search directions; i.e., the linear systems defining the search directions can be solved with an accuracy that increases as the solution is approached. A convergence analysis is carried out and the global convergence of the method is prove

    Some Preconditioning Techniques for Saddle Point Problems

    Get PDF
    Saddle point problems arise frequently in many applications in science and engineering, including constrained optimization, mixed finite element formulations of partial differential equations, circuit analysis, and so forth. Indeed the formulation of most problems with constraints gives rise to saddle point systems. This paper provides a concise overview of iterative approaches for the solution of such systems which are of particular importance in the context of large scale computation. In particular we describe some of the most useful preconditioning techniques for Krylov subspace solvers applied to saddle point problems, including block and constrained preconditioners.\ud \ud The work of Michele Benzi was supported in part by the National Science Foundation grant DMS-0511336

    Tropical Kraus maps for optimal control of switched systems

    Full text link
    Kraus maps (completely positive trace preserving maps) arise classically in quantum information, as they describe the evolution of noncommutative probability measures. We introduce tropical analogues of Kraus maps, obtained by replacing the addition of positive semidefinite matrices by a multivalued supremum with respect to the L\"owner order. We show that non-linear eigenvectors of tropical Kraus maps determine piecewise quadratic approximations of the value functions of switched optimal control problems. This leads to a new approximation method, which we illustrate by two applications: 1) approximating the joint spectral radius, 2) computing approximate solutions of Hamilton-Jacobi PDE arising from a class of switched linear quadratic problems studied previously by McEneaney. We report numerical experiments, indicating a major improvement in terms of scalability by comparison with earlier numerical schemes, owing to the "LMI-free" nature of our method.Comment: 15 page

    Natural preconditioners for saddle point systems

    Get PDF
    The solution of quadratic or locally quadratic extremum problems subject to linear(ized) constraints gives rise to linear systems in saddle point form. This is true whether in the continuous or discrete setting, so saddle point systems arising from discretization of partial differential equation problems such as those describing electromagnetic problems or incompressible flow lead to equations with this structure as does, for example, the widely used sequential quadratic programming approach to nonlinear optimization.\ud This article concerns iterative solution methods for these problems and in particular shows how the problem formulation leads to natural preconditioners which guarantee rapid convergence of the relevant iterative methods. These preconditioners are related to the original extremum problem and their effectiveness -- in terms of rapidity of convergence -- is established here via a proof of general bounds on the eigenvalues of the preconditioned saddle point matrix on which iteration convergence depends
    • ā€¦
    corecore