132,475 research outputs found

    A General Analysis of the Convergence of ADMM

    Full text link
    We provide a new proof of the linear convergence of the alternating direction method of multipliers (ADMM) when one of the objective terms is strongly convex. Our proof is based on a framework for analyzing optimization algorithms introduced in Lessard et al. (2014), reducing algorithm convergence to verifying the stability of a dynamical system. This approach generalizes a number of existing results and obviates any assumptions about specific choices of algorithm parameters. On a numerical example, we demonstrate that minimizing the derived bound on the convergence rate provides a practical approach to selecting algorithm parameters for particular ADMM instances. We complement our upper bound by constructing a nearly-matching lower bound on the worst-case rate of convergence.Comment: 10 pages, 6 figure

    Delay-agnostic Asynchronous Distributed Optimization

    Full text link
    Existing asynchronous distributed optimization algorithms often use diminishing step-sizes that cause slow practical convergence, or fixed step-sizes that depend on an assumed upper bound of delays. Not only is such a delay bound hard to obtain in advance, but it is also large and therefore results in unnecessarily slow convergence. This paper develops asynchronous versions of two distributed algorithms, DGD and DGD-ATC, for solving consensus optimization problems over undirected networks. In contrast to alternatives, our algorithms can converge to the fixed-point set of their synchronous counterparts using step-sizes that are independent of the delays. We establish convergence guarantees under both partial and total asynchrony. The practical performance of our algorithms is demonstrated by numerical experiments

    Semistochastic Quadratic Bound Methods

    Full text link
    Partition functions arise in a variety of settings, including conditional random fields, logistic regression, and latent gaussian models. In this paper, we consider semistochastic quadratic bound (SQB) methods for maximum likelihood inference based on partition function optimization. Batch methods based on the quadratic bound were recently proposed for this class of problems, and performed favorably in comparison to state-of-the-art techniques. Semistochastic methods fall in between batch algorithms, which use all the data, and stochastic gradient type methods, which use small random selections at each iteration. We build semistochastic quadratic bound-based methods, and prove both global convergence (to a stationary point) under very weak assumptions, and linear convergence rate under stronger assumptions on the objective. To make the proposed methods faster and more stable, we consider inexact subproblem minimization and batch-size selection schemes. The efficacy of SQB methods is demonstrated via comparison with several state-of-the-art techniques on commonly used datasets.Comment: 11 pages, 1 figur
    • …
    corecore