8,531 research outputs found

    The importance of better models in stochastic optimization

    Full text link
    Standard stochastic optimization methods are brittle, sensitive to stepsize choices and other algorithmic parameters, and they exhibit instability outside of well-behaved families of objectives. To address these challenges, we investigate models for stochastic minimization and learning problems that exhibit better robustness to problem families and algorithmic parameters. With appropriately accurate models---which we call the aProx family---stochastic methods can be made stable, provably convergent and asymptotically optimal; even modeling that the objective is nonnegative is sufficient for this stability. We extend these results beyond convexity to weakly convex objectives, which include compositions of convex losses with smooth functions common in modern machine learning applications. We highlight the importance of robustness and accurate modeling with a careful experimental evaluation of convergence time and algorithm sensitivity

    Catalyst Acceleration for Gradient-Based Non-Convex Optimization

    Get PDF
    We introduce a generic scheme to solve nonconvex optimization problems using gradient-based algorithms originally designed for minimizing convex functions. Even though these methods may originally require convexity to operate, the proposed approach allows one to use them on weakly convex objectives, which covers a large class of non-convex functions typically appearing in machine learning and signal processing. In general, the scheme is guaranteed to produce a stationary point with a worst-case efficiency typical of first-order methods, and when the objective turns out to be convex, it automatically accelerates in the sense of Nesterov and achieves near-optimal convergence rate in function values. These properties are achieved without assuming any knowledge about the convexity of the objective, by automatically adapting to the unknown weak convexity constant. We conclude the paper by showing promising experimental results obtained by applying our approach to incremental algorithms such as SVRG and SAGA for sparse matrix factorization and for learning neural networks
    corecore