1,360 research outputs found

    On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension

    Get PDF
    In this paper, we consider the cost of null controllability for a large class of linear equations of parabolic or dispersive type in one space dimension in small time. By extending the work of Tenenbaum and Tucsnak in "New blow-up rates for fast controls of Schr\"odinger and heat equations`", we are able to give precise upper bounds on the time-dependance of the cost of fast controls when the time of control T tends to 0. We also give a lower bound of the cost of fast controls for the same class of equations, which proves the optimality of the power of T involved in the cost of the control. These general results are then applied to treat notably the case of linear KdV equations and fractional heat or Schr\"odinger equations

    Local regularity for fractional heat equations

    Full text link
    We prove the maximal local regularity of weak solutions to the parabolic problem associated with the fractional Laplacian with homogeneous Dirichlet boundary conditions on an arbitrary bounded open set Ω⊂RN\Omega\subset\mathbb{R}^N. Proofs combine classical abstract regularity results for parabolic equations with some new local regularity results for the associated elliptic problems.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0756

    Sharp estimates and homogenization of the control cost of the heat equation on large domains

    Full text link
    We prove new bounds on the control cost for the abstract heat equation, assuming a spectral inequality or uncertainty relation for spectral projectors. In particular, we specify quantitatively how upper bounds on the control cost depend on the constants in the spectral inequality. This is then applied to the heat flow on bounded and unbounded domains modeled by a Schr\"odinger semigroup. This means that the heat evolution generator is allowed to contain a potential term. The observability/control set is assumed to obey an equidistribution or a thickness condition, depending on the context. Complementary lower bounds and examples show that our control cost estimates are sharp in certain asymptotic regimes. One of these is dubbed homogenization regime and corresponds to the situation that the control set becomes more and more evenly distributed throughout the domain while its density remains constant.Comment: 28 pages, 3 figure

    Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative

    Full text link
    This paper investigates the regional gradient controllability for ultra-slow diffusion processes governed by the time fractional diffusion systems with a Hadamard-Caputo time fractional derivative. Some necessary and sufficient conditions on regional gradient exact and approximate controllability are first given and proved in detail. Secondly, we propose an approach on how to calculate the minimum number of ω−\omega-strategic actuators. Moreover, the existence, uniqueness and the concrete form of the optimal controller for the system under consideration are presented by employing the Hilbert Uniqueness Method (HUM) among all the admissible ones. Finally, we illustrate our results by an interesting example.Comment: 16 page

    On the controllability of Partial Differential Equations involving non-local terms and singular potentials

    Get PDF
    In this thesis, we investigate controllability and observability properties of Partial Differential Equations describing various phenomena appearing in several fields of the applied sciences such as elasticity theory, ecology, anomalous transport and diffusion, material science, porous media flow and quantum mechanics. In particular, we focus on evolution Partial Differential Equations with non-local and singular terms. Concerning non-local problems, we analyse the interior controllability of a Schr\"odinger and a wave-type equation in which the Laplace operator is replaced by the fractional Laplacian (−Δ)s(-\Delta)^s. Under appropriate assumptions on the order ss of the fractional Laplace operator involved, we prove the exact null controllability of both equations, employing a L2L^2 control supported in a neighbourhood ω\omega of the boundary of a bounded C1,1C^{1,1} domain Ω⊂RN\Omega\subset\mathbb{R}^N. More precisely, we show that both the Schrodinger and the wave equation are null-controllable, for s≥1/2s\geq 1/2 and for s≥1s\geq 1 respectively. Furthermore, these exponents are sharp and controllability fails for s<1/2s<1/2 (resp. s<1s<1) for the Schrödinger (resp. wave) equation. Our proof is based on multiplier techniques and the very classical Hilbert Uniqueness Method. For models involving singular terms, we firstly address the boundary controllability problem for a one-dimensional heat equation with the singular inverse-square potential V(x):=μ/x2V(x):=\mu/x^2, whose singularity is localised at one extreme of the space interval (0,1)(0,1) in which the PDE is defined. For all 0<μ<1/40<\mu<1/4, we obtain the null controllability of the equation, acting with a L2L^2 control located at x=0x=0, which is both a boundary point and the pole of the potential. This result follows from analogous ones presented in \cite{gueye2014exact} for parabolic equations with variable degenerate coefficients. Finally, we study the interior controllability of a heat equation with the singular inverse-square potential Λ(x):=μ/δ2\Lambda(x):=\mu/\delta^2, involving the distance δ\delta to the boundary of a bounded and C2C^2 domain Ω⊂RN\Omega\subset\mathbb{R}^N, N≥3N\geq 3. For all μ≤1/4\mu\leq 1/4 (the critical Hardy constant associated to the potential Λ\Lambda), we obtain the null controllability employing a L2L^2 control supported in an open subset ω⊂Ω\omega\subset\Omega. Moreover, we show that the upper bound μ=1/4\mu=1/4 is sharp. Our proof relies on a new Carleman estimate, obtained employing a weight properly designed for compensating the singularities of the potential
    • …
    corecore