12,053 research outputs found

    Some Results for Drawing Area Proportional Venn3 With Convex Curves

    Get PDF
    Many data sets are visualized effectively with area proportional Venn diagrams, where the area of the regions is in proportion to a defined specification. In particular, Venn diagrams with three intersecting curves are considered useful for visualizing data in many applications, including bioscience, ecology and medicine. To ease the understanding of such diagrams, using restricted nice shapes for the curves is considered beneficial. Many research questions on the use of such diagrams are still open. For instance, a general solution to the question of when given area specifications can be represented by Venn3 using convex curves is still unknown. In this paper we study symmetric Venn3 drawn with convex curves and show that there is a symmetric area specification that cannot be represented with such a diagram. In addition, by using symmetric diagrams drawn with polygons, we show that, if area specifications are restricted so that the double intersection areas are no greater than the triple intersection area then the specification can be drawn with convex curves. We also propose a construction that allows the representation of some area specifications when the double intersection areas are greater than the triple intersection area. Finally, we present some open questions on the topic

    Drawing Area-Proportional Euler Diagrams Representing Up To Three Sets

    Get PDF
    Area-proportional Euler diagrams representing three sets are commonly used to visualize the results of medical experiments, business data, and information from other applications where statistical results are best shown using interlinking curves. Currently, there is no tool that will reliably visualize exact area-proportional diagrams for up to three sets. Limited success, in terms of diagram accuracy, has been achieved for a small number of cases, such as Venn-2 and Venn-3 where all intersections between the sets must be represented. Euler diagrams do not have to include all intersections and so permit the visualization of cases where some intersections have a zero value. This paper describes a general, implemented, method for visualizing all 40 Euler-3 diagrams in an area-proportional manner. We provide techniques for generating the curves with circles and convex polygons, analyze the drawability of data with these shapes, and give a mechanism for deciding whether such data can be drawn with circles. For the cases where non-convex curves are necessary, our method draws an appropriate diagram using non-convex polygons. Thus, we are now always able to automatically visualize data for up to three sets

    Reasoning with Spider Diagrams

    Get PDF
    Spider diagrams combine and extend Venn diagrams and Euler circles to express constraints on sets and their relationships with other sets. These diagrams can usefully be used in conjunction with object-oriented modelling notations such as the Unified Modelling Language. This paper summarises the main syntax and semantics of spider diagrams and introduces four inference rules for reasoning with spider diagrams and a rule governing the equivalence of Venn and Euler forms of spider diagrams. This paper also details rules for combining two spider diagrams to produce a single diagram which retains as much of their combined semantic information as possible and discusses disjunctive diagrams as one possible way of enriching the system in order to combine spider diagrams so that no semantic information is lost
    corecore