220 research outputs found

    Grafting Hypersequents onto Nested Sequents

    Full text link
    We introduce a new Gentzen-style framework of grafted hypersequents that combines the formalism of nested sequents with that of hypersequents. To illustrate the potential of the framework, we present novel calculi for the modal logics K5\mathsf{K5} and KD5\mathsf{KD5}, as well as for extensions of the modal logics K\mathsf{K} and KD\mathsf{KD} with the axiom for shift reflexivity. The latter of these extensions is also known as SDL+\mathsf{SDL}^+ in the context of deontic logic. All our calculi enjoy syntactic cut elimination and can be used in backwards proof search procedures of optimal complexity. The tableaufication of the calculi for K5\mathsf{K5} and KD5\mathsf{KD5} yields simplified prefixed tableau calculi for these logic reminiscent of the simplified tableau system for S5\mathsf{S5}, which might be of independent interest

    Bounded-analytic sequent calculi and embeddings for hypersequent logics

    Get PDF
    A sequent calculus with the subformula property has long been recognised as a highly favourable starting point for the proof theoretic investigation of a logic. However, most logics of interest cannot be presented using a sequent calculus with the subformula property. In response, many formalisms more intricate than the sequent calculus have been formulated. In this work we identify an alternative: retain the sequent calculus but generalise the subformula property to permit specific axiom substitutions and their subformulas. Our investigation leads to a classification of generalised subformula properties and is applied to infinitely many substructural, intermediate, and modal logics (specifically: those with a cut-free hypersequent calculus). We also develop a complementary perspective on the generalised subformula properties in terms of logical embeddings. This yields new complexity upper bounds for contractive-mingle substructural logics and situates isolated results on the so-called simple substitution property within a general theory

    Semantically informed methods in structural proof theory

    Get PDF

    Countermodel Construction via Optimal Hypersequent Calculi for Non-normal Modal Logics

    Get PDF
    International audienceWe develop semantically-oriented calculi for the cube of non-normal modal logics and some deontic extensions. The calculi manipulate hypersequents and have a simple semantic interpretation. Their main feature is that they allow for direct countermodel extraction. Moreover they provide an optimal decision procedure for the respective logics. They also enjoy standard proof-theoretical properties, such as a syntactical proof of cut-admissibility

    On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics

    Full text link
    We consider two styles of proof calculi for a family of tense logics, presented in a formalism based on nested sequents. A nested sequent can be seen as a tree of traditional single-sided sequents. Our first style of calculi is what we call "shallow calculi", where inference rules are only applied at the root node in a nested sequent. Our shallow calculi are extensions of Kashima's calculus for tense logic and share an essential characteristic with display calculi, namely, the presence of structural rules called "display postulates". Shallow calculi enjoy a simple cut elimination procedure, but are unsuitable for proof search due to the presence of display postulates and other structural rules. The second style of calculi uses deep-inference, whereby inference rules can be applied at any node in a nested sequent. We show that, for a range of extensions of tense logic, the two styles of calculi are equivalent, and there is a natural proof theoretic correspondence between display postulates and deep inference. The deep inference calculi enjoy the subformula property and have no display postulates or other structural rules, making them a better framework for proof search
    corecore